Skip to main content

Suppression of Plasma Echoes and Landau Damping in Sobolev Spaces by Weak Collisions in a Vlasov-Fokker-Planck Equation

Abstract

In this paper, we study Landau damping in the weakly collisional limit of a Vlasov-Fokker-Planck equation with nonlinear collisions in the phase-space \((x,v) \in {{\mathbb {T}}}_x^n \times {\mathbb {R}}^n_v\). The goal is four-fold: (A) to understand how collisions suppress plasma echoes and enable Landau damping in agreement with linearized theory in Sobolev spaces, (B) to understand how phase mixing accelerates collisional relaxation, (C) to understand better how the plasma returns to global equilibrium during Landau damping, and (D) to rule out that collision-driven nonlinear instabilities dominate. We give an estimate for the scaling law between Knudsen number and the maximal size of the perturbation necessary for linear theory to be accurate in Sobolev regularity. We conjecture this scaling to be sharp (up to logarithmic corrections) due to potential nonlinear echoes in the collisionless model.

This is a preview of subscription content, access via your institution.

References

  1. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch. Ration. Mech. Anal. 198(1), 39–123 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alinhac, S.: The null condition for quasilinear wave equations in two space dimensions i. Invent. Math. 145(3), 597–618 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Baggett, J., Driscoll, T., Trefethen, L.: A mostly linear model of transition of turbulence. Phys. Fluids 7, 833–838 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bardos, C., Nouri, A.: A Vlasov equation with Dirac potential used in fusion plasmas. J. Math. Phys. 53(11), 115621 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Beck, M., Wayne, C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations. Proc. R. Soc. of Edinb. Sect. A Math. 143(05), 905–927 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bedrossian, J.: Nonlinear echoes and Landau damping with insufficient regularity. arXiv:1605.06841 (2016)

  7. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow I: below threshold. arXiv:1506.03720 (2015)

  8. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow II: above threshold. arXiv:1506.03721 (2015)

  9. Bedrossian, J., Germain, P., Masmoudi, N.: On the stability threshold for the 3D Couette flow in Sobolev regularity. Ann. Math. 185(2), 541–608 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publications mathématiques de l’IHÉS 122(1), 195–300 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping in finite regularity for unconfined systems with screened interactions. Commun. Pure Appl. Math. (2016) (To appear)

  12. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE 2(1), 1–71 (2016)

    Article  MathSciNet  Google Scholar 

  13. Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the 2D Couette flow. Arch. Ration. Mech. Anal. 216(3), 1087–1159 (2016)

    Article  MATH  Google Scholar 

  14. Bedrossian, J., Vicol, V., Wang, F.: The Sobolev stability threshold for 2D shear flows near Couette. J. Nonlinear Sci. 1–25 (2016)

  15. Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224(3), 1161–1204 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  16. Boyd, T.J.M., Sanderson, J.J.: The Physics of Plasmas. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  17. Caglioti, E., Maffei, C.: Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys. 92(1/2), 301–323 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Callen, J.: Coulomb collision effects on linear Landau damping. Phys. Plasmas 21(5), 052106 (2014)

    Article  ADS  Google Scholar 

  19. Chen, H., Li, W.-X., Xu, C.-J.: Gevrey hypoellipticity for linear and non-linear Fokker–Planck equations. J. Differ. Equ. 246(1), 320–339 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Chen, Y., Desvillettes, L., He, L.: Smoothing effects for classical solutions of the full Landau equation. Arch. Ration. Mech. Anal. 193(1), 21–55 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 2(168), 643–674 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Dubrulle, B., Nazarenko, S.: On scaling laws for the transition to turbulence in uniform-shear flows. Europhys. Lett. 27(2), 129 (1994)

    Article  ADS  Google Scholar 

  24. Gallay, T., Wayne, E.: Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \({\mathbb{R}}^2\). Arch. Ration. Mech. Anal. 163, 209–258 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics. CRC Press, Boca Raton (1995)

    Book  MATH  Google Scholar 

  26. Golse, F., Lions, P.-L., Perthame, B., Sentis, R.: Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1), 110–125 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Golse, F., Perthame, B., Sentis, R.: Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale dun opérateur de transport. C. R. Acad. Sci. Paris Sér. I Math. 301(7), 341–344 (1985)

    MATH  MathSciNet  Google Scholar 

  28. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Guo, Y.: The Vlasov–Poisson–Landau system in a periodic box. J. Am. Math. Soc. 25(3), 759–812 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Han-Kwan, D., Rousset, F.: Quasineutral limit for Vlasov-Poisson with Penrose stable data. arXiv preprint arXiv:1508.07600 (2015)

  31. Hwang, H.J., Velaźquez, J.J.L.: On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J. 58(6), 2623–2660 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jabin, P.-E., Vega, L.: A real space method for averaging lemmas. J. Math. Pures Appl. 83(11), 1309–1351 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Johnston, G.L.: Dominant effects of Coulomb collisions on maintenance of Landau damping. Phys. Fluids 14(12), 2719–2726 (1971)

    Article  ADS  Google Scholar 

  34. Kelvin, L.: Stability of fluid motion—rectilinear motion of viscous fluid between two parallel plates. Philos. Mag. 24, 188 (1887)

    Article  Google Scholar 

  35. Landau, L.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25–34 (1946)

    MATH  MathSciNet  Google Scholar 

  36. Latini, M., Bernoff, A.: Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399–411 (2001)

    Article  ADS  MATH  Google Scholar 

  37. Lenard, A., Bernstein, I.B.: Plasma oscillations with diffusion in velocity space. Phys. Rev. 112(5), 1456 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Malmberg, J., Wharton, C.: Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett. 13(6), 184–186 (1964)

    Article  ADS  Google Scholar 

  39. Malmberg, J., Wharton, C., Gould, C., O’Neil, T.: Plasma wave echo. Phys. Rev. Lett. 20(3), 95–97 (1968)

    Article  ADS  Google Scholar 

  40. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ng, C., Bhattacharjee, A., Skiff, F.: Kinetic eigenmodes and discrete spectrum of plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 83(10), 1974 (1999)

    Article  ADS  Google Scholar 

  42. Ng, C., Bhattacharjee, A., Skiff, F.: Weakly collisional landau damping and three-dimensional Bernstein–Greene–Kruskal modes: new results on old problems a. Phys. Plasmas 13(5), 055903 (2006)

    Article  ADS  Google Scholar 

  43. O’Neil, T.M.: Effect of Coulomb collisions and microturbulence on the plasma wave echo. Phys. Fluids 11(11), 2420–2425 (1968)

    Article  ADS  MATH  Google Scholar 

  44. Orr, W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid, part I: a perfect liquid. Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 27, 9–68 (1907)

    Google Scholar 

  45. Penrose, O.: Electrostatic instability of a uniform non-Maxwellian plasma. Phys. Fluids 3, 258–265 (1960)

    Article  ADS  MATH  Google Scholar 

  46. Perthame, B., Souganidis, P.E.: A limiting case for velocity averaging. Annales scientifiques de l’Ecole normale supérieure 31, 591–598 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  47. Reddy, S., Schmid, P., Baggett, J., Henningson, D.: On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269–303 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Rhines, P., Young, W.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145 (1983)

    Article  ADS  MATH  Google Scholar 

  49. Ryutov, D.: Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion 41(3A), A1 (1999)

    Article  ADS  Google Scholar 

  50. Short, R., Simon, A.: Damping of perturbations in weakly collisional plasmas. Phys. Plasmas 9(8), 3245–3253 (2002)

    Article  ADS  Google Scholar 

  51. Stix, T.: Waves in Plasmas. Springer, Berlin (1992)

    Google Scholar 

  52. Su, C., Oberman, C.: Collisional damping of a plasma echo. Phys. Rev. Lett. 20(9), 427 (1968)

    Article  ADS  Google Scholar 

  53. Trefethen, L.N., Trefethen, A.E., Reddy, S.C., Driscoll, T.A.: Hydrodynamic stability without eigenvalues. Science 261(5121), 578–584 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Tristani, I.: Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime. arXiv:1603.07219 (2016)

  55. Vanneste, J.: Nonlinear dynamics of anisotropic disturbances in plane Couette flow. SIAM J. Appl. Math. 62(3), 924–944 (2002). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  56. Vanneste, J., Morrison, P., Warn, T.: Strong echo effect and nonlinear transient growth in shear flows. Phys. Fluids 10, 1398 (1998)

    Article  ADS  Google Scholar 

  57. Vukadinovic, J., Dedits, E., Poje, A.C., Schäfer, T.: Averaging and spectral properties for the 2D advection–diffusion equation in the semi-classical limit for vanishing diffusivity. Phys. D 310, 1–18 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  58. Young, B.: Landau damping in relativistic plasmas. J. Math. Phys. 57(2), 021502 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. Yu, J., Driscoll, C.: Diocotron wave echoes in a pure electron plasma. IEEE Trans. Plasma Sci. 30(1), 24–25 (2002)

    Article  ADS  Google Scholar 

  60. Yu, J., Driscoll, C., O’Neil, T.: Phase mixing and echoes in a pure electron plasma. Phys. Plasmas 12, 055701 (2005)

    Article  ADS  Google Scholar 

  61. Zlatoš, A.: Diffusion in fluid flow: dissipation enhancement by flows in 2D. Commun. Part. Differ. Equ. 35(3), 496–534 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Amitava Bhattacharjee, Michele Coti Zelati, Greg Hammett, Andrew Majda, and Toan Nguyen for helpful discussions on the problem and Amitava Bhattacharjee for suggesting that I pursue this work. The author was partially supported by NSF CAREER grant DMS-1552826, NSF DMS-1413177, and a Sloan research fellowship. Additionally, the research was supported in part by NSF RNMS #1107444 (Ki-Net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Bedrossian.

Additional information

The author was partially supported by NSF CAREER grant DMS-1552826, NSF DMS-1413177, and a Sloan research fellowship. Additionally, the research was supported in part by NSF RNMS #1107444 (Ki-Net).

A Properties of the Dissipation Multiplier

A Properties of the Dissipation Multiplier

The properties of the multiplier M are summarized in the next lemma. Properties (a) and (b) are essentially trivial, whereas properties (c) and (d) are not.

Lemma A.1

(Properties of M).    (a) There is a universal constant \(c_m\) (in particular, uniform in \(t,k,\eta ,\) and \(\nu \)) such that \(c_m < M \le 1\).

(b) For \(k \ne 0\) there holds,

$$\begin{aligned} \nu ^{1/3} \lesssim \partial _t M(t,k,\eta ) + \nu e^{2\nu t} \left| \eta - k\frac{1-e^{-\nu t}}{\nu }\right| ^2. \end{aligned}$$
(A.1)

(c) There holds (uniformly in \(k,\ell ,\eta ,\nu \) and t)

$$\begin{aligned} \left| 1 - \frac{M(t,\ell ,\xi }{M(t,k,\eta )}\right|&\lesssim \left\langle k-\ell ,\eta -\xi \right\rangle ^3\frac{\left\langle t \right\rangle ^2}{\nu ^{1/3} \max \left( \left\langle \eta \right\rangle ,\left\langle k \right\rangle \right) }. \end{aligned}$$
(A.2)

(d) There holds for \(\alpha \in {\mathbb {N}}^n\) such that \(\left| \alpha \right| \ge 1\),

$$\begin{aligned} \left| D_\eta ^\alpha M\right|&\lesssim e^{(\left| \alpha \right| -1)\nu t} \nu ^{\left| \alpha \right| /3}. \end{aligned}$$
(A.3)

Remark 16

That (A.2) holds even when \(\ell \) or k is zero is crucial to the proof.

Proof

Property (a) follows by integration and property (b) follows essentially by definition. Turn next to (A.2).

The case \(k\ne 0\) and \(\ell \ne 0\) :

First, observe that by Part (a),

$$\begin{aligned}&\left| 1 - \frac{M(t,\ell ,\xi )}{M(t,k,\eta )}\right| \nonumber \\&\quad \lesssim \nu ^{1/3} \int _0^t\left| \frac{1}{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } - \frac{1}{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } \right| {\, \mathrm d}\tau \nonumber \\&\quad = \nu ^{1/3}\int _0^t\left| \frac{\nu ^{2/3} e^{2\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 - \nu ^{2/3} e^{2\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| ^2}{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta -k \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) \left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } \right| {\, \mathrm d}\tau \nonumber \\&\quad \lesssim \nu ^{1/3} \int _0^t\frac{\left( \nu ^{1/3} e^{\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| + \nu ^{1/3} e^{\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| \right) }{\left( \left| k\right| ^2 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) \left( \left| \ell \right| ^2 + \nu ^{2/3} e^{2\nu \tau }\left| \xi - \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } \nonumber \\&\qquad \times \left( \nu ^{1/3} \frac{e^{\nu \tau }-1}{\nu }\left| k-\ell \right| + \nu ^{1/3}e^{\nu \tau }\left| \eta -\xi \right| \right) {\, \mathrm d}\tau \nonumber \\&\quad \lesssim \int _0^t\frac{\left\langle k-\ell , \eta -\xi \right\rangle \nu ^{2/3}\left( e^{\nu \tau } + \left\langle \frac{e^{\nu \tau }-1}{\nu } \right\rangle \right) }{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) ^{1/2}\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } {\, \mathrm d}\tau \nonumber \\&\qquad + \int _0^t \frac{\left\langle k-\ell , \eta -\xi \right\rangle \nu ^{2/3} \left( e^{\nu \tau } + \left\langle \frac{e^{\nu \tau }-1}{\nu } \right\rangle \right) }{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) \left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) ^{1/2}} {\, \mathrm d}\tau . \end{aligned}$$
(A.4)

To extract a gain in k and \(\ell \), simply make the change of variables \(s = \left| \ell \right| \nu ^{1/3}\frac{e^{\nu \tau }-1}{\nu }\) in the former integral and in the latter use \(s = \left| k\right| \nu ^{1/3}\frac{e^{\nu \tau }-1}{\nu }\), and we have

$$\begin{aligned} \left| 1 - \frac{M(t,\ell ,\xi )}{M(t,k,\eta )}\right|&\lesssim \frac{\left\langle k-\ell ,\eta -\xi \right\rangle ^2 \left\langle t \right\rangle }{\max (\left\langle k \right\rangle ,\left\langle \ell \right\rangle )}, \end{aligned}$$

which is sufficient. To extract a gain in \(\eta \) and \(\xi \) we multiply and divide (A.4) by \(\left\langle k(1-e^{-\nu \tau })\nu ^{-1} \right\rangle \) or \(\left\langle \ell (1-e^{-\nu \tau })\nu ^{-1} \right\rangle \):

$$\begin{aligned} \left| 1 - \frac{M(t,\ell ,\xi )}{M(t,k,\eta )}\right|&\lesssim \int _0^t\frac{\left\langle k-\ell , \eta -\xi \right\rangle \nu ^{2/3} \left( e^{\nu \tau } + \left\langle \frac{e^{\nu \tau }-1}{\nu } \right\rangle \right) \left\langle k\frac{1-e^{-\nu \tau }}{\nu } \right\rangle }{\nu ^{1/3} e^{\nu \tau } \left\langle \eta \right\rangle \left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } {\, \mathrm d}\tau \\&\quad + \int _0^t \frac{\left\langle k-\ell , \eta -\xi \right\rangle \nu ^{2/3} \left( e^{\nu \tau } + \left\langle \frac{e^{\nu \tau }-1}{\nu } \right\rangle \right) \left\langle \ell \frac{1-e^{-\nu \tau }}{\nu } \right\rangle }{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) \nu ^{1/3} e^{\nu \tau } \left\langle \xi \right\rangle } {\, \mathrm d}\tau \end{aligned}$$

Estimate \(\frac{1-e^{-\nu \tau }}{\nu } \le t\) on the support of the integrand and extract powers of k and \(\ell \),

$$\begin{aligned} \left| 1 - \frac{M(t,\ell ,\xi )}{M(t,k,\eta )}\right|&\lesssim \frac{\left\langle k-\ell , \eta -\xi \right\rangle \left\langle t \right\rangle ^2}{\left\langle \eta \right\rangle } \int _0^t\frac{\nu ^{1/3}\left\langle k \right\rangle }{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi - \ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } {\, \mathrm d}\tau \\&\quad + \frac{\left\langle k-\ell , \eta -\xi \right\rangle \left\langle t \right\rangle ^2}{\left\langle \xi \right\rangle } \int _0^t\frac{\nu ^{1/3}\left\langle \ell \right\rangle }{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| ^2 \right) } {\, \mathrm d}\tau . \end{aligned}$$

In this first integral, make the change of variables \(s = \left| \ell \right| \nu ^{1/3}\frac{e^{\nu \tau }-1}{\nu }\) and in the latter use \(s = \left| k\right| \nu ^{1/3}\frac{e^{\nu \tau }-1}{\nu }\), and therefore,

$$\begin{aligned} \left| 1 - \frac{M(t,\ell ,\xi )}{M(t,k,\eta )}\right|&\lesssim \frac{\left\langle k-\ell , \eta -\xi \right\rangle ^3 \left\langle t \right\rangle ^2}{\max (\left\langle \xi \right\rangle ,\left\langle \eta \right\rangle )} \end{aligned}$$

which is more than sufficient.

The case \(k = 0\) or \(\ell = 0\) :

By definition of M, (A.2) is trivial if \(k = \ell = 0\). The two remaining cases are essentially equivalent, hence without loss of generality, assume that \(k=0\) and \(\ell \ne 0\). By part(a) and \(\left| e^x - 1\right| \le x e^x\),

$$\begin{aligned} \left| 1 - M(t,\ell ,\xi )\right| \lesssim \int _0^t \frac{\nu ^{1/3}}{1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi -\ell \frac{1-e^{-\nu \tau }}{\nu }\right| ^2} {\, \mathrm d}\tau . \end{aligned}$$
(A.5)

First, if \(\left| \xi \right| > 2\left| \ell t\right| \), then by \((1-e^{-\nu \tau })/\nu \le \tau \le t\),

$$\begin{aligned} \left| 1 - M(t,\ell ,\xi )\right| \lesssim \int _0^t \frac{\nu ^{1/3}}{1 + \nu ^{2/3} e^{2\nu \tau }\left| \xi \right| ^2} {\, \mathrm d}\tau \lesssim \frac{\left\langle t \right\rangle }{\nu ^{1/3}\left\langle \xi \right\rangle ^2} \lesssim \frac{\left\langle t \right\rangle ^2}{\nu ^{1/3}\left\langle \xi \right\rangle \left\langle \ell \right\rangle }, \end{aligned}$$

which suffices. If \(\left| \xi \right| \le 2\left| \ell t\right| \), then apply \(s = \left| \ell \right| \nu ^{1/3} \frac{e^{\nu \tau }-1}{\nu }\) in (A.5) to deduce

$$\begin{aligned} \left| 1 - M(t,\ell ,\xi )\right| \lesssim \frac{1}{\left| \ell \right| } \lesssim \frac{\left\langle t \right\rangle }{\max (\left| \ell \right| ,\left\langle \xi \right\rangle )}. \end{aligned}$$

This covers all cases and completes the proof of (A.2).

Consider next the differentiation of M with respect to \(\eta \). Compute a single derivative first:

$$\begin{aligned} \left| \nabla _\eta M(t,k,\eta )\right|&= \left| \int _0^t\frac{2 \nu e^{2\nu \tau }\left( \eta - k \frac{1-e^{-\nu \tau }}{\nu }\right) }{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - k \frac{1-e^{-\nu \tau }}{\nu }\right| ^2\right) ^2} {\, \mathrm d}\tau M(t,k,\eta )\right| \\&\lesssim \int _0^t\frac{\nu ^{2/3} e^{\nu \tau } }{\left( 1 + \nu ^{2/3} e^{2\nu \tau }\left| \eta - k\frac{1-e^{-\nu \tau }}{\nu }\right| ^2\right) ^{3/2}} {\, \mathrm d}\tau . \end{aligned}$$

Via the change of variables \(s = \left| k\right| \nu ^{1/3}e^{\nu \tau } \frac{1-e^{-\nu \tau }}{\nu }\), there holds,

$$\begin{aligned} \left| \nabla _\eta M\right|&\lesssim \nu ^{1/3}. \end{aligned}$$

Iterating the above argument gives for all \(\left| \alpha \right| \ge 1\),

$$\begin{aligned} \left| D_\eta ^\alpha M\right|&\lesssim _{\left| \alpha \right| } e^{(\left| \alpha \right| -1)\nu t} \nu ^{\left| \alpha \right| /3}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bedrossian, J. Suppression of Plasma Echoes and Landau Damping in Sobolev Spaces by Weak Collisions in a Vlasov-Fokker-Planck Equation. Ann. PDE 3, 19 (2017). https://doi.org/10.1007/s40818-017-0036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-017-0036-6

Keywords

  • Landau damping
  • Vlasov-Fokker-Planck
  • Weak collisions
  • Long-time dynamics
  • Singular limits

Mathematics Subject Classification

  • 35B35
  • 35B34
  • 35B40
  • 35Q83
  • 35Q84