Skip to main content
Log in

Fractional Order T–S Fuzzy Chaotic Models for Secure EEG Signal via a Wireless Communication Protocol Using a Disturbance Observer and Sliding Mode Control Technique

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the secure communication of the electroencephalogram (EEG) signal is presented via the wireless protocol. To obtain the goal of secure communication, a new stability condition for providing a new disturbance observer (DO) to estimate the attacked signals of the secure communication system is proposed. Herein, the fractional-order calculus was used to obtain the goal of the stability design. To meet the goal of the construction of the master and slave, the fractional-order chaotic system was used. First, the Takagi-Sugeno fuzzy was used to remodel the master and slave systems with support of the Grunwald–Letnikov approximation technique from continuous time to discrete time domain. Second, the DO was equipped to the slave system to reject the unwanted on both public channels and uncertain values on the master and slave sides. Third, the sliding mode control was designed based on the given stability theorem. Fourth, the stability was provided based on Lyapunov condition. Final, the simulation by using MATLAB software and experiment by using the ESP8266 chips with the wireless communication were provided to show the effectiveness of the proposed theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yan, N., Cheng, H., Liu, X., Chen, F., Wang, M.: Lightweight privacy-preserving feature extraction for EEG signals under edge computing. IEEE Internet Things J. 11(3), 2520–2533 (2023)

    Google Scholar 

  2. Liu, Y., Huang, H., Xiao, F., Malekian, R., Wang, W.: Classification and recognition of encrypted EEG data based on neural network. J. Inf. Secur. Appl. 54(102567), 1–10 (2020)

    Google Scholar 

  3. Singandhupe, A., La, H.M., Feil-Seifer, D.: Reliable security algorithm for drones using individual characteristics from an EEG Signal. IEEE Access 6, 22976–22986 (2018)

    Article  Google Scholar 

  4. Anwar, S.M., Saeed, S.M.U., Majid, M., Usman, S., Mehmood, C.A., Liu, W.: A game player expertise level classification system using electroencephalography (EEG). Appl. Sci. 8(1), 18 (2018)

    Article  Google Scholar 

  5. Stevner, A.B.A., Vidaurre, D., Cabral, J., et al.: Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep. Nat. Commun. 10(1035), 1–14 (2019)

    Google Scholar 

  6. Meng, W., Cai, Y., Yang, L.T., Chiu, W.-Y.: Hybrid emotion-aware monitoring system based on brainwaves for internet of medical things. IEEE Internet Things J. 8(21), 16014–16022 (2021)

    Article  Google Scholar 

  7. Rajesh, S., Paul, V., Menon, V.G., Jacob, S., Vinod, P.: Secure brainto-brain communication with edge computing for assisting post-stroke paralyzed patients. IEEE Internet Things J. 7(4), 2531–2538 (2020)

    Article  Google Scholar 

  8. Shahzadi, R., Anwar, S.M., Qamar, F., Ali, M., Rodrigues, J.J., Alnowami, M.: Secure EEG signal transmission for remote health monitoring using optical chaos. IEEE Access 7, 57769–57778 (2019)

    Article  Google Scholar 

  9. Wen, D., Jiao, W., Li, X., Wan, et al.: The EEG signals encryption algorithm with K-sine-transform-based coupling chaotic system. Inf. Sci. 622, 962–984 (2023)

    Article  Google Scholar 

  10. Petrás, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)

    Book  Google Scholar 

  11. Lendek, Z., Guerra, T.M., Babuska, R., Schutter, B.: Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models. Springer, Berlin (2011)

    Book  Google Scholar 

  12. Zhang, Z., Song, X., Sun, X., Stojanovic, V.: Hybrid driven based fuzzy secure filtering for nonlinear parabolic partial differential equation systems with cyber attacks. Int. J. Adapt. Control Signal Proces. 37(2), 380–398 (2023)

    Article  MathSciNet  Google Scholar 

  13. Song, X., Song, Y., Stojanovic, V., Song, S.: Improved dynamic event-triggered security control for T-S fuzzy LPV-PDE systems via pointwise measurements and Point control. Int. J. Fuzzy Syst. 25(8), 3177–92 (2023)

    Article  Google Scholar 

  14. Zhang, Q., Song, X., Song, S., Stojanovic, V.: Finite-time sliding mode control for singularly perturbed PDE systems. J. Franklin Inst. 360(2), 841–861 (2023)

    Article  MathSciNet  Google Scholar 

  15. Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)

    Article  Google Scholar 

  16. Wu, X., Xu, K., Lei, M., He, X.: Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances. IEEE Trans. Autom. Sci. Eng. 17(4), 2182–2189 (2020)

    Article  Google Scholar 

  17. Kuppusamy, S., Joo, Y.H.: Memory-based integral sliding-mode control for T-S fuzzy systems with PMSM via disturbance observer. IEEE Trans. Cybernetics 51(5), 2457–2465 (2019)

    Article  Google Scholar 

  18. Giap, V.N.: Text message secure communication based on fractional-order chaotic systems with Takagi-Sugeno fuzzy disturbance observer and sliding mode control. J. Dyn. Control 11(6), 3109–23 (2023)

    Article  MathSciNet  Google Scholar 

  19. Nguyen, Q.D., Pham, Q.D., Thanh, N.T., Giap, V.N.: An optimal homogenous stability-based disturbance observer and sliding mode control for secure communication system. IEEE Access 11, 27317–27329 (2023)

    Article  Google Scholar 

  20. Chen, M., Shao, S.Y., Jiang, B.: Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans. Cybernetics 47(10), 3110–3123 (2017)

    Article  Google Scholar 

  21. Nguyen, Q.D., Huang, S.C., Giap, V.N.: Lyapunov-based fractional order of disturbance observer and sliding mode control for a secure communication of chaos-based system. Int. J. Control Autom. Syst. 21(11), 3595–3606 (2023)

    Article  Google Scholar 

  22. Cicek, S., Kocamaz, U.E., Uyaroglu, Y.: Secure communication with a chaotic system owning logic element. AEU-Int. J. Electron. Commun. 88, 52–62 (2018)

    Article  Google Scholar 

  23. Chen, Y.J., Chou, H.G., Wang, W.J., Tsai, S.H., Tanaka, K., Wang, H.O., Wang, K.C.: A polynomial-fuzzy-model-based synchronization methodology for the multi-scroll Chen chaotic secure communication system. Eng. Appl. Artif. Intell. 87, 103251 (2020)

    Article  Google Scholar 

  24. Giap, V.N., Nguyen, Q.D., Huang, S.C.: Synthetic adaptive fuzzy disturbance observer and sliding-mode control for chaos-based secure communication systems. IEEE Access 9, 23907–23928 (2021)

    Article  Google Scholar 

  25. Giap, V.N., Nguyen, Q.D., Pham, D.H., Lin, C.M.: Wireless secure communication of chaotic systems based on Takagi-Sugeno fuzzy optimal time varying disturbance observer and sliding mode control. Int. J. Fuzzy Syst. 25(7), 2519–33 (2023)

    Article  Google Scholar 

  26. Huang, Y., Huang, L., Wang, Y., Peng, Y., Yu, F.: Shape synchronization in driver-response of 4-D chaotic system and its application in image encryption. IEEE Access 8, 135308–135319 (2020)

    Article  Google Scholar 

  27. Li, C.L., Li, Z.Y., Feng, W., Tong, Y.N., Du, J.R., Wei, D.Q.: Dynamical behavior and image encryption application of a memristor-based circuit system. AEU-Int. J. Electron. Commun. 110, 152861 (2019)

    Article  Google Scholar 

  28. Al-kateeb, Z.N., Mohammed, S.J.: A novel approach for audio file encryption using hand geometry. Multimed. Tools Appl. 79(27–28), 19615–19628 (2020)

    Article  Google Scholar 

  29. Lin, C.-M., Pham, D.-H., Huynh, T.-T.: Encryption and decryption of audio signal and image secure communications using chaotic system synchronization control by TSK fuzzy brain emotional learning controllers. IEEE Trans. Cybernetics 52(12), 13684–13698 (2022)

    Article  Google Scholar 

  30. Song, X., Wu, N., Song, S., Stojanovic, V.: Switching-like event-triggered state estimation for reaction diffusion neural networks against DoS attacks. Neural Process. Lett. 55(7), 8997–9018 (2023)

    Article  Google Scholar 

  31. Nguyen, Q.D., Vu, D.D., Huang, S.C., Giap, V.N.: Fixed-time supper twisting disturbance observer and sliding mode control for a secure communication of fractional-order chaotic systems. J. Vibr. Control (2023)

  32. Tian, M.W., Yan, S.R., Liu, J., Alattas, K.A., Mohammadzadeh, A., Vu, M.T.: A new type-3 fuzzy logic approach for chaotic systems: robust learning algorithm. Mathematics 10(15), 2594 (2022)

    Article  Google Scholar 

  33. Mohammadzadeh, A., Zhang, C., Alattas, K.A., El-Sousy, F.F., Vu, M.T.: Fourier-based type-2 fuzzy neural network: simple and effective for high dimensional problems. Neurocomputing 547, 126316 (2023)

    Article  Google Scholar 

  34. Humaidi, A.J., Tala’at, E.N., Hameed, M.R., Hameed, A.H.: Design of adaptive observer-based backstepping control of cart-pole pendulum system. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1–5). IEEE

  35. Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals. 22(3), 549–554 (2004)

    Article  Google Scholar 

  36. Tolba, M.F., AbdelAty, A.M., Soliman, N.S., Said, L.A., Madian, A.H., Azar, A.T., Radwan, A.G.: FPGA implementation of two fractional order chaotic systems. AEU-Int. J. Electron. Commun. 78, 162–172 (2017)

    Article  Google Scholar 

  37. Dzieliński, A., Sierociuk, D.: Stability of discrete fractional order state-space systems. J. Vibr. Control 14, 1543–1556 (2008)

    Article  MathSciNet  Google Scholar 

  38. Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Ministry of Science and Technology of Taiwan under Grant MOST-2221-E-155 -027 -MY3

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chih-Min Lin or Quang Dich Nguyen.

Ethics declarations

Conflict of interest

The author declares no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giap, V.N., Pham, D.H., Lin, CM. et al. Fractional Order T–S Fuzzy Chaotic Models for Secure EEG Signal via a Wireless Communication Protocol Using a Disturbance Observer and Sliding Mode Control Technique. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-024-01712-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-024-01712-4

Keywords

Navigation