Skip to main content
Log in

Neutrosophic Fuzzy Decision-Making Using TOPSIS and Autocratic Methodology for Machine Selection in an Industrial Factory

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Multi-attribute decision-making (MADM) is a crucial component of modern decision theory, with extensive application in several practical problems. In this particular setting, the pervasive problem of uncertainty has prompted the development of many theoretical frameworks, most notably the fuzzy set (FS) and its subsequent expansions, to address imprecise and ambiguous information. Among the many frameworks, the neutrosophic set (NS) has become a significant paradigm due to its ability to clearly define truth, falsehood, and indeterminacy. This unique characteristic allows for a more nuanced approach to dealing with ambiguity within decision-making scenarios. However, both the FS and the NS demonstrate constraints when faced with ambiguous and inconsistent circumstances. To address these constraints, this research explores the conceptual domain of neutrosophic fuzzy set (NFS), which represents a fusion of fuzzy FS and NS theories. This study presents a novel scoring mechanism that enables a comprehensive evaluation of NFSs and a customized distance measure designed to accurately identify inconsistencies within the dataset in both forward and backward directions. Following that, a decision-making framework is presented, derived from the extensions of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Autocratic approaches for group MADM using NFSs. The amalgamation of these techniques is further augmented using frequency as a criterion to get a definitive ranking for alternatives. Simultaneously, using the distinctive benefits of the TOPSIS and the Autocratic technique enables a thorough assessment, enhancing the strength and knowledge of decision-making in situations that include group decision-makers and NFS. The suggested strategy is applied to deal with industrial machine selection problems, where the decision values of the attributes for alternatives and the weights of the attributes are given by decision-makers based on NF values. These values facilitate assessing determination levels of alternative characteristics and attribute weights. This study contributes significantly to the broader discussion on decision-making in situations involving uncertainty and its direct relevance to the selection of machines. One notable characteristic of these approaches to reduce computation complexity is integrating decision and weight matrices from various management viewpoints into a unified aggregated assessment matrix. Despite strategies aimed at addressing decision-making challenges involving group suggestions and the use of neutrosophic fuzzy numbers, the analytical results indicate that the proposed approaches demonstrate a desirable level of computational simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

  2. Alhazaymeh, K., Halim, S.A., Salleh, A.R., Hassan, N.: Soft intuitionistic fuzzy sets. Appl. Math. Sci. 6(54), 2669–2680 (2012)

    MathSciNet  Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(1), 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  Google Scholar 

  4. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1(20), 87–96 (1986)

    Article  Google Scholar 

  5. Smarandache, F.: A Unifying Field in Logics: Neutrosophic Logic, pp. 1–141. American Research Press, Rehoboth (1999)

    Google Scholar 

  6. Kacprzak, D.: An extended TOPSIS method based on ordered fuzzy numbers for group decision making. Artif. Intell. Rev. 53(3), 2099–2129 (2020). https://doi.org/10.1007/s10462-019-09728-1

    Article  Google Scholar 

  7. Verma, A.K., Verma, R., Mahanti, N.C.: Facility location selection: an interval valued intuitionistic fuzzy TOPSIS approach. J. Mod. Math. Stat. 4(2), 68–72 (2010). https://doi.org/10.3923/jmmstat.2010.68.72

    Article  MathSciNet  Google Scholar 

  8. Karim, R., Karmaker, C.L.: Machine selection by AHP and TOPSIS methods. Am. J. Ind. Eng. 4(1), 7–13 (2016)

    Google Scholar 

  9. Kaur, A., Kumar, A., Appadoo, S.S.: A note on approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. Int. J. Fuzzy Syst. 21(3), 1010–1011 (2019). https://doi.org/10.1007/s40815-018-0581-5

    Article  MathSciNet  Google Scholar 

  10. Wei, Y., Liu, P.: Risk evaluation method of high-technology based on uncertain linguistic variable and TOPSIS method. J. Comput. 4(3), 276–282 (2009). https://doi.org/10.4304/jcp.4.3.276-282

    Article  Google Scholar 

  11. Mu, Z., Zeng, S., Wang, P.: Novel approach to multi-attribute group decision-making based on interval-valued Pythagorean fuzzy power maclaurin symmetric mean operator. Comput. Ind. Eng. 155, 107049 (2021). https://doi.org/10.1016/j.cie.2020.107049

    Article  Google Scholar 

  12. Balin, A.: A novel fuzzy multi-criteria decision-making methodology based upon the spherical fuzzy sets with a real case study. Iran. J. Fuzzy Syst. 17(4), 167–177 (2020). https://doi.org/10.22111/ijfs.2020.5413

    Article  Google Scholar 

  13. Pramanik, S., Mallick, R.: TODIM strategy for multi-attribute group decision making in trapezoidal neutrosophic number environment. Complex Intell. Syst. 5(4), 379–389 (2019). https://doi.org/10.1007/s40747-019-0110-7

    Article  Google Scholar 

  14. Chen, S.M., Lee, L.W.: Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst. Appl. 37(4), 2790–2798 (2010). https://doi.org/10.1016/j.eswa.2009.09.012

    Article  Google Scholar 

  15. Gao, J., Guo, F., Ma, Z., Huang, X.: Multi-criteria decision-making framework for large-scale rooftop photovoltaic project site selection based on intuitionistic fuzzy sets. Appl. Soft Comput. 102, 107098 (2021). https://doi.org/10.1016/j.asoc.2021.107098

    Article  Google Scholar 

  16. Cheng, S.H.: Autocratic multiattribute group decision making for hotel location selection based on interval-valued intuitionistic fuzzy sets. Inf. Sci. 427, 77–87 (2018). https://doi.org/10.1016/j.ins.2017.10.018

    Article  MathSciNet  Google Scholar 

  17. Nafei, A., Gu, Y., Yuan, W.: An extension of the topsis for multi-attribute group decision making under neutrosophic environment. Miskolc Mathematical Notes 22(1), 393–405 (2021). https://doi.org/10.18514/MMN.2021.3332

    Article  MathSciNet  Google Scholar 

  18. Nancy, H.G.: An improved score function for ranking neutrosophic sets and its application to decision-making process. Int. J. Uncertain. Quant. 6(5), 377–385 (2018). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016018441

    Article  Google Scholar 

  19. Liu, P.: An extended TOPSIS method for multiple attribute group decision making based on generalized interval-valued trapezoidal fuzzy numbers. Informatica 35(2), 185–196 (2011)

    Google Scholar 

  20. Nafei, A., Yuan, W., Nasseri, H.: Group multi-attribute decision making based on interval neutrosophic sets. Stud. Inf. Control 28(3), 309–316 (2019). https://doi.org/10.24846/v28i3y201907

    Article  Google Scholar 

  21. Mohammadi, S., Golara, S., Mousavi, N.: Selecting adequate security mechanisms in e-business processes using fuzzy TOPSIS. Int. J. Fuzzy Syst. Appl. 2(1), 35–53 (2012). https://doi.org/10.4018/ijfsa.2012010103

    Article  Google Scholar 

  22. Wibowo, S.: Interval-valued intuitionistic fuzzy multicriteria group decision making approach for hotel selection. Int. J. Mach. Learn. Comput. 3(1), 65–69 (2013). https://doi.org/10.7763/ijmlc.2013.v3.274

    Article  Google Scholar 

  23. Das, S., Roy, B.K., Kar, M.B., Kar, S., Pamučar, D.: neutrosophic fuzzy set and its application iin decision making. J. Ambient. Intell. Humaniz. Comput. 11, 5017–5029 (2020). https://doi.org/10.1007/s12652-020-01808-3

    Article  Google Scholar 

  24. Chen, S.-J., Hwang, C.-L.: Fuzzy multiple attribute decision making methods. In: Fuzzy Multiple Attribute Decision Making: Methods and Applications, pp. 289–486. Springer, Berlin (1992)

  25. Hwang, C.-L., Yoon, K.: Methods for Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48318-9_3

  26. Saaty, T.L.: The Analytic Hierarchy Process: Planning. Priority Setting. Resource Allocation. MacGraw-Hill, New York (1980)

  27. Parveen, N., Kamble, P.N.: An extension of Topsis for group decision making in intuitionistic fuzzy environment. Math. Found. Comput. 4(1), 61–71 (2021). https://doi.org/10.3934/mfc.2021002

    Article  Google Scholar 

  28. Lima Junior, F.R., Osiro, L., Carpinetti, L.C.R.: A comparison between fuzzy AHP and fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 21, 194–209 (2014). https://doi.org/10.1016/j.asoc.2014.03.014

    Article  Google Scholar 

  29. Opricovic, S.: Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade (1998)

    Google Scholar 

  30. Opricovic, S., Tzeng, G.H.: Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 178(2), 514–529 (2007). https://doi.org/10.1016/j.ejor.2006.01.020

    Article  Google Scholar 

  31. Cheng, S., Chan, C.W., Huang, G.H.: Using multiple criteria decision analysis for supporting decisions of solid waste management. J. Environ. Sci. Health 37(6), 975–990 (2002). https://doi.org/10.1081/ESE-120004517

    Article  Google Scholar 

  32. Singh, K.R., Dutta, R., Kalamdhad, A.S., Kumar, B.: Risk characterization and surface water quality assessment of Manas River, Assam (India) with an emphasis on the TOPSIS method of multi-objective decision making. Environ. Earth Sci. 77(23), 1–10 (2018). https://doi.org/10.1007/s12665-018-7970-9

    Article  Google Scholar 

  33. Şahin, R.: COPRAS method with neutrosophic sets. Stud. Fuzziness Soft Comput. (2019). https://doi.org/10.1007/978-3-030-00045-5_19

    Article  Google Scholar 

  34. Nafei, A., Javadpour, A., Nasseri, H., Yuan, W.: Optimized score function and its application in group multiattribute decision making based on fuzzy neutrosophic sets. Int. J. Intell. Syst. 36(12), 7522–7543 (2021). https://doi.org/10.1002/int.22597

    Article  Google Scholar 

  35. Smarandache, F.: The score, accuracy, and certainty functions determine a total order on the set of neutrosophic triplets (T, I, F). Neutrosophic Sets Syst. 38, 1–14 (2020). https://doi.org/10.5281/zenodo.4300354

    Article  Google Scholar 

  36. Şahin, R.: Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment. arXiv preprint (2014). arXiv:1412.5202

  37. Niu, Y., Abdullayev, V.: Design and performance analysis of hybrid electric vehicles using Matlab/Simulink. Wasit J. Comput. Math. Sci. 2(2), 64–75 (2023)

    Article  Google Scholar 

  38. Ma, K., Li, Z., Liu, P., Yang, J., Geng, Y., Yang, B., Guan, X.: Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J. 8(17), 13343–13354 (2021)

    Article  Google Scholar 

  39. Zhang, X., Pan, W., Scattolini, R., Yu, S., Xu, X.: Robust tube-based model predictive control with Koopman operators. Automatica 137, 110114 (2022)

    Article  MathSciNet  Google Scholar 

  40. Li, Q., Lin, H., Tan, X., Du, S.: H∞ consensus for multiagent-based supply chain systems under switching topology and uncertain demands. IEEE Trans. Syst. Man Cybern. Syst. 50(12), 4905–4918 (2020)

    Article  Google Scholar 

  41. Elngar, A., Burlea-Schiopoiu, A.: Feature selection and dynamic network traffic congestion classification based on machine learning for Internet of Things. Wasit J. Comput. Math. Sci. 2(2), 76–91 (2023)

    Article  Google Scholar 

  42. Farhan, R.I., Maolood, A.T., Hassan, N.: Hybrid feature selection approach to improve the deep neural network on new flow-based dataset for NIDS. Wasit J. Comput. Math. Sci. 1(1), 66–83 (2021)

    Google Scholar 

  43. Deng, Y., Lv, J., Huang, D., Du, S.: Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer. Neurocomputing 548, 126391 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Appendix 1

Appendix 1

Proof of Theorem 1

Based on Definition 1, we have:

$$S({M}_{1})=\frac{\left((2-{B}_{1})\left({A}_{1}-\frac{{B}_{1}}{2}-{C}_{1}+3\right)(2-{C}_{1})\right)+4{\mu }_{1}}{4},$$

and

$$S\left({M}_{2}\right)=\frac{\left((2-{B}_{2})\left({A}_{2}-\frac{{B}_{2}}{2}-{C}_{2}+3\right)(2-{C}_{2})\right)+4{\mu }_{2}}{4}.$$

Therefore,

$$\begin{aligned} S\left({M}_{2}\right)-S\left({M}_{1}\right)&=\frac{\left(\left(2-{B}_{2}\right)\left({A}_{2}-\frac{{B}_{2}}{2}-{C}_{2}+3\right)\left(2-{C}_{2}\right)\right)+4{\mu }_{2}}{4} \\ & \quad -\frac{\left(\left(2-{B}_{1}\right)\left({A}_{1}-\frac{{B}_{1}}{2}-{C}_{1}+3\right)\left(2-{C}_{1}\right)\right)+4{\mu }_{1}}{4} \\ &=\frac{\left(\left(2-{B}_{2}-{B}_{1}+{B}_{1}\right)\left({A}_{2}-\frac{{B}_{2}}{2}-{C}_{2}+3\right)\left(2-{C}_{2}+{C}_{1}-{C}_{1}\right)\right)+4{\mu }_{2}}{4} \\ & \quad -\frac{\left(\left(2-{B}_{1}\right)\left({A}_{1}-\frac{{B}_{1}}{2}-{C}_{1}+3\right)\left(2-{C}_{1}\right)\right)+4{\mu }_{1}}{4} =\frac{\left(\left(\left(2-{B}_{1}\right)+\left({B}_{1}-{B}_{2}\right)\right)\left({A}_{2}-\frac{{B}_{2}}{2}-{C}_{2}+3\right)\left(\left(2-{C}_{1}\right)+\left({C}_{1}-{C}_{2}\right)\right)\right)+4{\mu }_{2}}{4} \\ & \quad -\frac{\left(\left(2-{B}_{1}\right)\left({A}_{1}-\frac{{B}_{1}}{2}-{C}_{1}+3\right)\left(2-{C}_{1}\right)\right)+4{\mu }_{1}}{4}\\ &=\frac{\left(\left({A}_{2}-{A}_{1}\right)+\frac{{B}_{1}-{B}_{2}}{2}+\left({C}_{1}-{C}_{2}\right)\right)\left(2-{C}_{1}\right)\left(2-{B}_{1}\right)}{4}\\ & \quad +\frac{\left({A}_{2}-\frac{{B}_{2}}{2}-{C}_{2}+3\right)(2-{C}_{1})(2-{B}_{1})}{4} \\ & \quad +\frac{\left({A}_{2}-\frac{{B}_{2}}{2}-{C}_{2}+3\right)(({B}_{1}-{B}_{2})(2-{C}_{1}))}{4}+\frac{\left({A}_{2}-\frac{{B}_{2}}{2}-{C}_{2}+3\right)(({B}_{1}-{B}_{2})({C}_{1}-{C}_{2}))}{4}+({\mu }_{2}-{\mu }_{1}).\end{aligned}$$

Since \({M}_{1}\subseteq {M}_{2}\) then, it follows that \({\mu }_{1}\le {\mu }_{2},{A}_{1}\le {A}_{2},{B}_{2}\le {B}_{1},\;text{and}\;{C}_{2}\le {C}_{1}.\) Based on this information, we can easily verify that all the values in the existing brackets of the above equation are greater or equal to zero. Therefore, \(S({M}_{2})-S({M}_{1})\ge 0,\) and subsequently \(S({M}_{2})\ge S({M}_{1}).\square \)

Proof of Proposition 2

The properties I, II, and III are straightforward. To prove property IV, assume that \(M=\{{x}_{i},{\mu _{\rm M}}({x}_{i}),{A_{\rm M}}({x}_{i},\mu ),{B_{\rm M}}({x}_{i},\mu ),{C_{\rm M}}({x}_{i},\mu )\}\). Since \(K\subseteq L\subseteq M,\)

$${\mu }_{K}\left({x}_{i}\right)\le {\mu }_{L}\left({x}_{i}\right)\le {\mu _{\rm M}}\left({x}_{i}\right),$$
$${A}_{K}\left({x}_{i},\mu \right)\le {A}_{L}\left({x}_{i},\mu \right)\le {A_{\rm M}}\left({x}_{i},\mu \right),$$
$${B}_{K}({x}_{i},\mu )\ge {B}_{L}({x}_{i},\mu )\ge {B_{\rm M}}({x}_{i},\mu ),$$

And,\({C}_{K}({x}_{i},\mu )\ge {C}_{L}({x}_{i},\mu )\ge {C_{\rm M}}({x}_{i},\mu ).\) Therefore,

$$\begin{aligned}\left|{\mu }_{K}\left({x}_{i}\right)-{\mu }_{L}\left({x}_{i}\right)\right| & \le \left|{\mu }_{K}\left({x}_{i}\right)-{\mu _{\rm M}}\left({x}_{i}\right)\right|, \\ \left|{\mu }_{L}\left({x}_{i}\right)-{\mu _{\rm M}}\left({x}_{i}\right)\right| & \le \left|{\mu }_{K}\left({x}_{i}\right)-{\mu _{\rm M}}\left({x}_{i}\right)\right|, \\ \left|{A}_{K}\left({x}_{i},\mu \right)-{A}_{L}\left({x}_{i},\mu \right)\right| & \le \left|{A}_{K}\left({x}_{i},\mu \right)-{A_{\rm M}}\left({x}_{i},\mu \right)\right|, \\ \left|{A}_{L}\left({x}_{i},\mu \right)-{A_{\rm M}}\left({x}_{i},\mu \right)\right| & \le \left|{A}_{K}\left({x}_{i},\mu \right)-{A_{\rm M}}\left({x}_{i},\mu \right)\right|, \\ \left|{B}_{K}\left({x}_{i},\mu \right)-{B}_{L}\left({x}_{i},\mu \right)\right| & \le \left|{B}_{K}\left({x}_{i},\mu \right)-{B_{\rm M}}\left({x}_{i},\mu \right)\right|, \\ \left|{B}_{L}\left({x}_{i},\mu \right)-{B_{\rm M}}\left({x}_{i},\mu \right)\right| & \le \left|{B}_{K}\left({x}_{i},\mu \right)-{B_{\rm M}}\left({x}_{i},\mu \right)\right|,\end{aligned}$$

and

$$\left|{C}_{K}({x}_{i},\mu )-{C}_{L}({x}_{i},\mu )\right|\le \left|{C}_{K}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|,\left|{C}_{L}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|\le \left|{C}_{K}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|.$$

So,

$$\left[\begin{array}{c}\frac{\left(\begin{array}{c}\left|{\mu }_{K}({x}_{i})-{\mu }_{L}({x}_{i})\right|+\left|{A}_{K}({x}_{i},\mu )-{A}_{L}({x}_{i},\mu )\right|+\\ \left|{B}_{K}({x}_{i},\mu )-{B}_{L}({x}_{i},\mu )\right|+\left|{C}_{K}({x}_{i},\mu )-{C}_{L}({x}_{i},\mu )\right|\end{array}\right)}{8}+\\ \frac{\text{max}\left(\begin{array}{c}\left|{A}_{K}({x}_{i},\mu )-{A}_{L}({x}_{i},\mu )\right|,\left|{B}_{K}({x}_{i},\mu )-{B}_{L}({x}_{i},\mu )\right|,\\ \left|{C}_{K}({x}_{i},\mu )-{C}_{L}({x}_{i},\mu )\right|\end{array}\right)}{3}\end{array}\right]\le \left[\begin{array}{c}\frac{\left(\begin{array}{c}\left|{\mu }_{K}({x}_{i})-{\mu _{\rm M}}({x}_{i})\right|+\left|{A}_{K}({x}_{i},\mu )-{A_{\rm M}}({x}_{i},\mu )\right|+\\ \left|{B}_{K}({x}_{i},\mu )-{B_{\rm M}}({x}_{i},\mu )\right|+\left|{C}_{K}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|\end{array}\right)}{8}+\\ \frac{\text{max}\left(\begin{array}{c}\left|{A}_{K}({x}_{i},\mu )-{A_{\rm M}}({x}_{i},\mu )\right|,\left|{B}_{K}({x}_{i},\mu )-{B_{\rm M}}({x}_{i},\mu )\right|,\\ \left|{C}_{K}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|\end{array}\right)}{3}\end{array}\right],$$

and

$$\left[\begin{array}{c}\frac{\left(\begin{array}{c}\left|{\mu }_{L}({x}_{i})-{\mu _{\rm M}}({x}_{i})\right|+\left|{A}_{L}({x}_{i},\mu )-{A_{\rm M}}({x}_{i},\mu )\right|+\\ \left|{B}_{L}({x}_{i},\mu )-{B_{\rm M}}({x}_{i},\mu )\right|+\left|{C}_{L}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|\end{array}\right)}{8}+\\ \frac{\text{max}\left(\begin{array}{c}\left|{A}_{L}({x}_{i},\mu )-{A_{\rm M}}({x}_{i},\mu )\right|,\left|{B}_{L}({x}_{i},\mu )-{B_{\rm M}}({x}_{i},\mu )\right|\\ ,\left|{C}_{L}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|\end{array}\right)}{3}\end{array}\right]\le \left[\begin{array}{c}\frac{\left(\begin{array}{c}\left|{\mu }_{K}({x}_{i})-{\mu _{\rm M}}({x}_{i})\right|+\left|{A}_{K}({x}_{i},\mu )-{A_{\rm M}}({x}_{i},\mu )\right|+\\ \left|{B}_{K}({x}_{i},\mu )-{B_{\rm M}}({x}_{i},\mu )\right|+\left|{C}_{K}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|\end{array}\right)}{8}+\\ \frac{\text{max}\left(\begin{array}{c}\left|{A}_{K}({x}_{i},\mu )-{A_{\rm M}}({x}_{i},\mu )\right|,\left|{B}_{K}({x}_{i},\mu )-{B_{\rm M}}({x}_{i},\mu )\right|,\\ \left|{C}_{K}({x}_{i},\mu )-{C_{\rm M}}({x}_{i},\mu )\right|\end{array}\right)}{3}\end{array}\right].$$

Hence,

$$d(K,M)\ge d(K,L),\;text{and}\;d(K,M)\ge d(L,M).\square $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafei, A., Huang, CY., Javadpour, A. et al. Neutrosophic Fuzzy Decision-Making Using TOPSIS and Autocratic Methodology for Machine Selection in an Industrial Factory. Int. J. Fuzzy Syst. 26, 860–886 (2024). https://doi.org/10.1007/s40815-023-01640-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01640-9

Keywords

Navigation