Skip to main content
Log in

UPSO-FSVRNET: Fuzzy Identification Approach in a VANET Environment Based on Fuzzy Support Vector Regression and Unified Particle Swarm Optimization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

It is still very difficult to exploit possibilistic concepts to identify the strict parameters of vehicular ad-hoc networks (VANET) while minimizing the dispersion of its constraints. In this paper, as a first contribution, an empirical study is presented within the framework of the development of a predictive model based on a linear regression model to interpret the phenomenon of VANET network congestion in a precise way by minimizing the dispersion of predicted outputs. The objective of the model developed is twofold: (1) to model the interactions between the traffic variables involved in the model and to exploit possibilistic concepts to identify the constraints of the VANET network based on a linear optimization under constraints, (2) to anticipate with precision the probability of occurrence of an unforeseen incident on VANET traffic. In addition, the traffic data involved in our model are observed vehicle speed, predicted travel time, observed travel time, and delay time. In addition, the accuracy of the prediction is proven by checking the relevance of the model according to the goodness of fit and the statistical significance of each explained variable. Our second contribution focuses on the design of a new technique for collecting, aggregating, and predicting real-time traffic flow. The main objective is to optimize the prediction error rate under strict conditions whose traffic parameters have unstable values. For this, we propose a traffic flow prediction approach based on fuzzy logic and regression analysis. The approach incorporates approved traffic parameters with the appearance of fuzzy least squares. To increase the prediction accuracy of the traffic flow and then arrive at a quadratic resolution under constraints, we integrate the Fuzzy Support Vector Regression for VANET networks (FSVRNET) model and Unified Particle Swarm Optimization (UPSO) algorithm in our approach. The chosen approach aims to model the interactions between traffic data observed from multiple data sources (e.g., connected loop detectors) to adjust the stability of traffic parameters in the prediction process. Our experimental study shows a strong correlation between the predicted data and the actual state of the VANET traffic flow. In addition, the prediction error of regression analysis is significantly reduced. Prediction performance using UPSO-FSVRNET is better with the proposed test set, as assumed by most identification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sellami, L., Alaya, B.: SAMNET: Self-adaptative multi-kernel clustering algorithm for urban VANETs. Vehicular Communications, Vol. 29 (2021)

  2. Abbasi, F., Zarei, M., Rahmani, A.: FWDP: A Fuzzy logic-based vehicle Weighting model for Data Prioritization in vehicular ad hoc networks. Vehicular Communications (2021)

  3. Juan Carlos, F.G., Yurilev, Y.C., Heriberto, R.F.: Distance measures for Interval Type-2 fuzzy numbers. Discret. Appl. Math. 197, 93–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kandali, K., Bennis, L., Bennis, H.: A new hybrid routing protocol using a modified K-means clustering algorithm and continuous hopfield network for VANET. IEEE Access. 9, 47169–47183 (2021)

    Article  Google Scholar 

  5. Tanaka, H., Lee, H.: Interval regression analysis by quadratic programming approach. IEEE Trans. Fuzzy Syst. 6, 473–481 (1998)

    Article  Google Scholar 

  6. Ontiveros, E., Melin, P., Castillo, O.: Designing hybrid classifiers based on general type-2 fuzzy logic and support vector machines. Soft. Comput. 24(23), 18009–18019 (2020)

    Article  Google Scholar 

  7. Zhang, C., Chen, K., Zeng, X., Xue, X.: misbehavior detection based on support vector machine and Dempster-Shafer theory of evidence in VANETs. IEEE Access 6, 59860–59870 (2018)

    Article  Google Scholar 

  8. Tsai, H.C.: Unified particle swarm delivers high efficiency to particle swarm optimization. Appl. Soft Comput. 55, 371–383 (2017)

    Article  Google Scholar 

  9. Cervantes, J., Lamont, F.G., Rodríguez, L., Lopez-Chau, A.: A comprehensive survey on support vector machine classification: applications, challenges, and trends. Neurocomputing 408, 189–215 (September 2020)

    Article  Google Scholar 

  10. Habshah, M., Jama, M.: A modified Robust support vector regression approach for data containing high leverage points and outliers in the Y-direction. Math. Stat. 8(5), 493–505 (2020)

    Article  Google Scholar 

  11. Tavara, S.: Parallel computing of support vector machines: a survey. ACM Comput. Surv. 51(6), 1231–12338 (2019)

    Article  Google Scholar 

  12. Ahmad, M.S., Adnan, S.M., Zaidi, S., Bhargava, P.: A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens. Constr. Build. Mater. 248, 118475 (2020)

    Article  Google Scholar 

  13. Sanchez-Fernandez, M.P., de Prado-Cumplido, M., Arenas-Garcia, J., Perez-Cruz, F.: SVM multiregression for non-linear channel estimation in multiple-input multiple-output systems. IEEE Trans. Signal Process. 58(8), 2298–2307 (2004)

    Article  MATH  Google Scholar 

  14. Xue, Z., Zhang, R., Qin, C., Zeng, X.: An adaptive twin support vector regression machine based on rough and fuzzy set theories. Neural Comput. Appl. 32(9), 4709–4732 (2020)

    Article  Google Scholar 

  15. Khan, A.A., Abolhasan, M., Ni, W., Lipman, J., Jamalipour, A.: A hybrid-fuzzy logic guided genetic algorithm (H-FLGA) approach for resource optimization in 5G VANETs. IEEE Trans. Veh. Technol. 68(7), 6964–6974 (July 2019)

    Article  Google Scholar 

  16. Xiang, X., Wang, X., Zhou, Z.: Self-adaptive on-demand geographic routing for mobile ad hoc networks. IEEE Trans. Mob. Comput. 11(9), 1572–1586 (2012). https://doi.org/10.1109/TMC.2011.177

    Article  Google Scholar 

  17. Lai, W.K., Lin, M., Yang, Y.: A machine learning system for routing decision-making in urban vehicular ad hoc networks. Int. J. Distrib. Sensor Netw. 11(3), 374391 (2015)

    Article  Google Scholar 

  18. Agrawal, S., Raw, R.S., Tyagi, N., Misra, A.K.: Fuzzy logic based greedy routing (flgr) in multi-hop vehicular Adhoc networks. Indian J. Sci. Technol. (2015). https://doi.org/10.17485/ijst/2015/v8i1/70085

  19. Olivas, F., Amaya, I., Ortiz-Bayliss, J.C., Conant-Pablos, S.E., Terashima-Marín, H.: Enhancing hyperheuristics for the knapsack problem through fuzzy logic. Comput. Intell. Neurosci. 2021, 8834324 (2021)

    Article  Google Scholar 

  20. Tal, I., Muntean, G.: Towards reasoning vehicles. ACM Comput. Surv. 50(6), 1–37 (2018)

    Article  Google Scholar 

  21. Cheng, N., Lu, N., Zhang, N., Shen, X.S., Mark, J.W.: Vehicular WiFi offloading: challenges and solutions. Vehic. Commun. 1(1), 13–21 (2014)

    Article  Google Scholar 

  22. Zhou, Y., Li, H., Shi, C., Lu, N., Cheng, N.: A fuzzy-rule based data delivery scheme in VANETs with intelligent speed prediction and relay selection. Wirel. Commun. Mob. Comput. 2018, 1–15 (2018)

    Google Scholar 

  23. Soleymani, S.A., Abdullah, A.H., Anisi, M.H., et al.: BRAIN-F: beacon rate adaption based on fuzzy logic in vehicular ad hoc network. Int. J. Fuzzy Syst. 19, 301–315 (2017)

    Article  Google Scholar 

  24. Zhang, H., Bochem, A., Sun, X., Hogrefe, D.: A security aware fuzzy enhanced reliable ant colony optimization routing in vehicular ad hoc networks. In: Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 1071–1078 (2018)

  25. Shams, E.A., Rizaner, A., Ulusoy, A.H.: Trust aware support vector machine intrusion detection and prevention system in vehicular ad hoc networks. Comput. Secur. 78, 245–254 (2018)

    Article  Google Scholar 

  26. Ghebleh, R., Ghaffari, A.: A multi-criteria method for resource discovery in distributed systems using deductive fuzzy system. Int. J. Fuzzy Syst. 19, 1829–1839 (2017)

    Article  Google Scholar 

  27. Shengdong, D., Li, T., Gong, X., Horng, S.-J.: A hybrid method for traffic flow forecasting using multimodal deep learning. Int. J. Comput. Intell. Syst. 13, 85–97 (2020)

    Article  Google Scholar 

  28. Alaya, B., Sellami, L.: Clustering method and symmetric/asymmetric cryptography scheme adapted to securing urban VANET networks. J. Inf. Secur. Appl. 58(2), 102779 (2021)

    Google Scholar 

  29. Ranjan, N., Bhandari, S., Zhao, H.P., Kim, H., Khan, P.: City-wide traffic congestion prediction based on CNN, LSTM and transpose CNN. IEEE Access 8, 81606–81620 (2020)

    Article  Google Scholar 

  30. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100(1), 9–34 (1999)

    Article  MathSciNet  Google Scholar 

  31. Wang, G., Xu, Y., Qin, S.: Basic fuzzy event space and probability distribution of probability fuzzy space. Mathematics. 7(6), 1–15 (2019)

    Article  Google Scholar 

  32. Hao, P.Y., Chiang, J.H.: Fuzzy regressions analysis by support vector learning approach. IEEE Trans. Fuzzy Syst. 16(2), 428–441 (2008)

    Article  Google Scholar 

  33. Škrabánek, P., Marek, J.: Models used in fuzzy linear regression. In: 17th Conference on Applied Mathematics APLIMAT, pp. 954–964 (2018)

  34. Sulistyo, S., Alam, S.: SINR and throughput improvement for VANET using fuzzy power control. Int. J. Commun. Syst. 31(6), e3579 (2018)

    Article  Google Scholar 

  35. Kashani, M., Ghanbari, M., Rahmani, A.: Improving performance of opportunistic routing protocol using fuzzy logic for vehicular ad-hoc networks in highways. J. Artif. Intell. Data Min. 8(10), 1–14 (2020)

    Google Scholar 

  36. Buckley, J., Feuring, T.: Linear and non-linear fuzzy regression: evolutionary algorithm solutions. Fuzzy Sets Syst. 112, 381–394 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hao, P., Chiang, J.: Fuzzy regression analysis by support vector learning approach. IEEE Trans. Fuzzy Syst. 16(2), 428–441 (2008)

    Article  Google Scholar 

  38. Wang, H., Wang, J.: An effective image representation method using kernel classification. In: IEEE 26th International Conference on Tools with Artificial Intelligence pp. 853–858 (2014)

  39. Tanaka, H., Lee, H.: Fuzzy linear regression combining central tendency and possibilistic. properties. IEEE. Fuzzy Sets Syst. 24, 063–068 (1997)

    Google Scholar 

  40. Hong, D.H., Hwang, C.: Ridge regression procedures for fuzzy models using triangular fuzzy numbers. Internat. J. Unc. Fuzz. Knowl. Based Syst. 12, 145–159 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi, Y., Zhang, L., Cao, Z., Tanveer, M., Lin, C.-T.: Distributed semi-supervised fuzzy regression with interpolation consistency regularization. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3104339

    Article  Google Scholar 

  42. Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)

    Article  Google Scholar 

  43. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th Symp. Micro Mach. Hum. Sci., IEEE Service Center, pp. 39–43 (1995)

  44. Muniyandi, R.C., Hasan, M.K., Hammoodi, M.R., Maroosi, A.: An improved harmony search algorithm for proactive routing protocol in VANET. J. Adv. Transp. 2021, 6641857 (2021)

    Google Scholar 

  45. Yelure, B., Sonavane, S.: Particle swarm optimization based routing method for vehicular ad-hoc network. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 1573–1578

  46. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  47. Konstantinos, E.P., Michael, N.V.: Particle Swarm Optimization and Intelligence: Advances and Application. Published in the United States of America by Information Science Reference (an imprint of IGI Global), pp. 89–98, (2010).

  48. Wu, Q., Law, R.: Fuzzy support vector regression machine with penalizing Gaussian noises on triangular fuzzy number space. Expert Syst. Appl. 37(12), 7788–7795 (2010)

    Article  Google Scholar 

  49. Peng, D., Xiaoqi, M.A., Zhuanping, W., Yuanfu, M.O., Peng, P.: A prediction method of missing vehicle position information based on least square support vector machine. Sustain. Oper. Comput. 2, 30–35 (2021)

    Article  Google Scholar 

  50. Pahikkala, T., Boberg, J., Salakoski, T.: Fast n-fold cross-validation for regularized least-squares. In: Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence (SCAI 2006), pp. 83–90, Espoo, Finland (2006)

  51. Darwish, A., Poleshchuk, O., Komarov, E.: A new fuzzy linear regression model for a special case of interval type-2 fuzzy sets. Appl. Math. Inf. Sci. 10, 1209–1214 (2016)

    Article  Google Scholar 

  52. Bisserier, A., Boukezzoula, R., Galichet, S.: Linear fuzzy regression using trapezoidal fuzzy intervals. J. Uncert. Syst. 4(1), 59–72 (2010)

    MATH  Google Scholar 

Download references

Funding

Funding was provided by Qassim University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bechir Alaya.

Appendix 1

Appendix 1

j

Type

x 1

x 2

x 3

x 4

x 5

y

1

Test

0.36031

0.28594

0.014864

0.8952

0.51015

1.3915

2

Identification

0.54851

0.39413

0.28819

0.94239

0.71396

4.6557

3

Identification

0.26177

0.50301

0.81673

0.33508

0.51521

6.2132

4

Outlier

0.59734

0.72198

0.98548

0.43736

0.60587

10.5848

5

Test

0.049278

0.30621

0.017363

0.47116

0.9667

1.1886

6

Identification

0.57106

0.11216

0.81939

0.14931

0.82212

5.658

7

Identification

0.70086

0.44329

0.62114

0.13586

0.31775

6.4823

8

Identification

0.96229

0.46676

0.56022

0.5325

0.5877

8.2347

9

Identification

0.75052

0.014669

0.24403

0.72579

0.1302

1.7014

10

Identification

0.73999

0.66405

0.82201

0.3987

0.25435

9.7441

11

Outlier

0.43187

0.72406

0.26321

0.35842

0.80303

5.9823

12

Identification

0.63427

0.28163

0.75363

0.28528

0.66785

6.4305

13

Identification

0.80303

0.26182

0.65964

0.86864

0.013626

6.5469

14

Identification

0.083881

0.70847

0.21406

0.62641

0.56158

2.2481

15

Identification

0.94546

0.78386

0.60212

0.24117

0.45456

10.919

16

Identification

0.91594

0.98616

0.60494

0.97808

0.90495

14.06

17

Identification

0.60199

0.47334

0.6595

0.6405

0.28216

7.0714

18

Identification

0.25356

0.90282

0.18336

0.22985

0.065034

3.2945

19

Identification

0.87345

0.45106

0.63655

0.68134

0.47659

8.2171

20

Identification

0.5134

0.80452

0.17031

0.66582

0.98371

6.1764

21

Identification

0.73265

0.82886

0.5396

0.13472

0.92235

9.7668

22

Identification

0.42223

0.16627

0.62339

0.022493

0.5612

4.162

23

Outlier

0.96137

0.39391

0.68589

0.2622

0.65232

9.6279

24

Identification

0.072059

0.52076

0.67735

0.11652

0.77268

4.5169

25

Identification

0.55341

0.71812

0.87683

0.069318

0.10618

8.4911

26

Test

0.29198

0.56919

0.012891

0.85293

0.0010734

1.7484

27

Identification

0.85796

0.46081

0.3104

0.18033

0.54176

5.911

28

Identification

0.33576

0.44531

0.77908

0.032419

0.0068578

5.4411

29

Identification

0.6802

0.087745

0.3073

0.73393

0.45134

2.7881

30

Identification

0.053444

0.44348

0.92668

0.53652

0.19566

5.9031

31

Identification

0.35666

0.3663

0.67872

0.27603

0.78714

5.6943

32

Test

0.4983

0.30253

0.074321

0.36846

0.61856

2.3165

33

Test

0.43444

0.85184

0.070669

0.012886

0.015521

4.0561

34

Test

0.56246

0.75948

0.01193

0.88921

0.89085

5.1463

35

Identification

0.61662

0.94976

0.22715

0.86602

0.7617

7.9658

36

Outlier

0.11334

0.55794

0.51625

0.25425

0.90704

4.3186

37

Identification

0.89825

0.014233

0.4582

0.56948

0.75857

3.5161

38

Identification

0.75455

0.59618

0.7032

0.15926

0.38073

8.3834

39

Identification

0.79112

0.81621

0.58248

0.59436

0.33111

10.172

40

Identification

0.81495

0.97709

0.50921

0.3311

0.50408

11.1

41

Test

0.67

0.22191

0.07429

0.65861

0.56457

2.2748

42

Identification

0.20088

0.70368

0.19324

0.86363

0.7672

3.3021

43

Identification

0.27309

0.52206

0.3796

0.56762

0.77987

4.3628

44

Identification

0.62623

0.9329

0.27643

0.98048

0.4841

8.0007

45

Identification

0.53685

0.71335

0.77088

0.79183

0.80221

9.5484

46

Identification

0.059504

0.22804

0.31393

0.15259

0.47101

2.023

47

Outlier

0.088962

0.44964

0.63819

0.83303

0.20276

4.9731

48

Identification

0.27131

0.1722

0.98657

0.19186

0.57961

6.1146

49

Identification

0.40907

0.96882

0.50288

0.63899

0.6665

7.5644

50

Identification

0.47404

0.35572

0.9477

0.669

0.67677

8.1508

51

Identification

0.90899

0.049047

0.82803

0.77209

0.94251

6.7529

52

Identification

0.59625

0.75534

0.91756

0.37982

0.77015

10.382

53

Identification

0.32896

0.89481

0.11308

0.44159

0.7374

4.1526

54

Identification

0.47819

0.28615

0.81213

0.48306

0.86626

6.964

55

Identification

0.59717

0.2512

0.90826

0.60811

0.99095

8.128

56

Outlier

0.16145

0.93274

0.15638

0.176

0.50393

3.0023

57

Identification

0.82947

0.13098

0.12212

0.002026

0.62909

2.0933

58

Outlier

0.95612

0.94082

0.76267

0.79022

0.79261

15.0394

59

Identification

0.59555

0.70185

0.7218

0.51361

0.44865

8.7316

60

Identification

0.028748

0.84768

0.65164

0.21323

0.52436

4.0547

61

Identification

0.81212

0.20927

0.75402

0.10345

0.17147

5.655

62

Identification

0.61011

0.45509

0.66316

0.15734

0.13067

6.3181

63

Identification

0.70149

0.081074

0.88349

0.40751

0.21878

5.7541

64

Outlier

0.092196

0.85112

0.27216

0.40776

0.10548

3.5862

65

Outlier

0.42489

0.56205

0.41943

0.052693

0.14143

5.0938

66

Identification

0.37558

0.3193

0.21299

0.94182

0.45697

2.8742

67

Test

0.16615

0.3749

0.0356

0.14997

0.78813

1.4327

68

Identification

0.83315

0.8678

0.081164

0.38437

0.28106

7.7773

69

Identification

0.83864

0.37218

0.85057

0.31106

0.22479

7.9538

70

Identification

0.45161

0.07369

0.3402

0.16853

0.90887

2.9745

71

Identification

0.9566

0.19984

0.46615

0.89665

0.007329

5.0784

72

Identification

0.14715

0.049493

0.91376

0.32272

0.58874

5.578

73

Identification

0.86993

0.56671

0.22858

0.734

0.54212

6.7023

74

Identification

0.76944

0.12192

0.86204

0.4109

0.65352

6.3838

75

Identification

0.44416

0.52211

0.65662

0.39979

0.31343

6.2254

76

Identification

0.62062

0.11706

0.89118

0.50552

0.23116

6.1369

77

Identification

0.95169

0.76992

0.48814

0.16931

0.41606

10.106

78

Identification

0.64001

0.37506

0.99265

0.52475

0.2988

8.4947

79

Identification

0.24733

0.82339

0.37333

0.6412

0.67244

4.8341

80

Identification

0.3527

0.046636

0.53138

0.016197

0.93826

3.7189

81

Identification

0.18786

0.59791

0.18132

0.83685

0.34315

2.4511

82

Identification

0.49064

0.94915

0.50194

0.80346

0.56296

8.2901

83

Outlier

0.40927

0.2888

0.42219

0.69778

0.11889

4.2938

84

Identification

0.46353

0.88883

0.66043

0.46189

0.16902

8.0608

85

Identification

0.61094

0.10159

0.67365

0.082613

0.2789

4.178

86

Identification

0.071168

0.065315

0.95733

0.82072

0.55681

6.7146

87

Identification

0.31428

0.2343

0.19187

0.19302

0.48559

2.0056

88

Identification

0.60838

0.9331

0.11122

0.44535

0.95222

7.2387

89

Identification

0.17502

0.063128

0.56505

0.012958

0.23192

3.0042

90

Identification

0.62103

0.26422

0.96917

0.30874

0.47866

7.3143

91

Test

0.24596

0.99953

0.023744

0.87535

0.52652

2.896

92

Identification

0.58736

0.21199

0.87022

0.83526

0.79272

7.6784

93

Test

0.50605

0.49841

0.026877

0.3331

0.19301

2.7117

94

Identification

0.46478

0.29049

0.51953

0.88071

0.9096

5.6903

95

Identification

0.54142

0.67275

0.19229

0.47969

0.9222

5.6388

96

Identification

0.94233

0.95799

0.71569

0.56082

0.013266

13.409

97

Identification

0.34176

0.76655

0.25067

0.61591

0.76755

4.771

98

Identification

0.4018

0.66612

0.93386

0.6619

0.94734

9.4795

99

Identification

0.30769

0.13094

0.13719

0.61663

0.81331

1.9195

100

Identification

0.41157

0.095413

0.52162

0.68514

0.92383

4.569

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellami, L., Alaya, B. UPSO-FSVRNET: Fuzzy Identification Approach in a VANET Environment Based on Fuzzy Support Vector Regression and Unified Particle Swarm Optimization. Int. J. Fuzzy Syst. 25, 743–762 (2023). https://doi.org/10.1007/s40815-022-01408-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01408-7

Keywords

Navigation