Skip to main content

Advertisement

Log in

Simplified Neutrosophic Petri Nets Used for Identification of Superheat Degree

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

As an important modeling tool for knowledge representation and reasoning (KRR), fuzzy Petri nets (FPNs) have been applied in kinds of fields. However, there exist some deficiencies for existing FPNs, resulting in application limitations. (1) The sum of membership and non-membership is less than 1, which is hard to model various types of uncertain knowledge by existing FPNs; (2) The reasonable and nonidentical experiential knowledge for electrolysis operation among domain experts should be fused; (3) The existing knowledge reasoning algorithm min, max, and product operators may not work well in many practical applications. In an effort to overcome the shortcomings of existing FPNs, a new type of FPNs is proposed, called simplified neutrosophic Petri nets (SNPNs). First, the simplified neutrosophic sets (SNSs) are introduced into SNPNs, characterized by three independent degrees of truth-membership, indeterminacy-membership and falsity-membership, to depict the experiential cognition of domain experts. Second, the extended TOPSIS (ETOPSIS) is proposed for knowledge fusion. Third, hybrid averaging SNNs concurrent reasoning algorithm (HASCRA) is also proposed to improve the knowledge reasoning efficiency. Finally, a novel model for the identification of superheat degree of aluminum electrolysis cell (ISDAEC) is proposed based on SNPNs. Comparative experimental results show that the SNPNs provide a feasible and practical decision-making method. Moreover, this fact denotes that the proposed method has potential applications in intelligent ISDAEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu, H.C., Lin, Q.L., Mao, L.X., et al.: Dynamic adaptive fuzzy Petri nets for knowledge representation and reasoning. IEEE Trans. Syst. Man Cybern. 43(6), 1399–1410 (2013)

    Article  Google Scholar 

  2. Zhou, K.Q., Zain, A.M.: Fuzzy Petri nets and industrial applications: a review. Artif. Intell. Rev. 45(4), 405–446 (2016)

    Article  Google Scholar 

  3. Chen, S.: Fuzzy backward reasoning using fuzzy Petri nets. IEEE Trans. Syst. Man Cybern. B 30(6), 846–856 (2000)

    Article  Google Scholar 

  4. Habib, S., Akram, M., Ashraf, A.: Fuzzy climate decision support systems for tomatoes in high tunnels. Int. J. Fuzzy Syst. 19(3), 751–775 (2017)

    Article  Google Scholar 

  5. Lipp, H.P.: The application of a fuzzy Petri net for controlling complex industrial processes. IFAC Proc. 16(13), 471–477 (1983)

    Article  Google Scholar 

  6. Liu, H., You, J., Li, Z., Tian, G.: Fuzzy Petri nets for knowledge representation and reasoning: a literature review. Eng. Appl. Artif. Intell. 60, 45–56 (2017)

    Article  Google Scholar 

  7. Liu, H.C., Luan, X., Li, Z.W., et al.: Linguistic Petri nets based on cloud model theory for knowledge representation and reasoning. IEEE Trans. Knowl. Data Eng. 30(4), 717–728 (2017)

    Article  Google Scholar 

  8. Zhang, Y., Zhang, Y., Wen, F., et al.: A fuzzy Petri net based approach for fault diagnosis in power systems considering temporal constraints. International J. Electr. Power Energy Syst. 78, 215–224 (2016)

    Article  Google Scholar 

  9. Gniewek, L.: Sequential control algorithm in the form of fuzzy interpreted Petri net. IEEE Trans. Syst. Man Cybern. 43(2), 451–459 (2012)

    Article  Google Scholar 

  10. Li, Z.W., Wu, N.Q., Zhou, M.C.: Deadlock control of automated manufacturing systems based on Petri nets-a literature review. IEEE Trans. Syst. Man Cybern. C 42(4), 437–462 (2011)

    Google Scholar 

  11. Pramod, D., Bharathi, S.V., Raman, R.: A fuzzy Petri-net model for predicting the post-implementation risks of ERP in small and medium enterprises. Int. Rev. Comput. Softw. 9(11), 1852–1860 (2014)

    Google Scholar 

  12. Yue, W.C., Gui, W.H., Chen, X.F., et al.: Knowledge representation and reasoning using self-learning interval type-2 fuzzy Petri nets and extended TOPSIS. Int. J. Mach. Learn. Cybern. 10(12), 3499–3520 (2019)

    Article  Google Scholar 

  13. Liu, H.C., You, J.X., Li, Z.W., et al.: Fuzzy Petri nets for knowledge representation and reasoning: a literature review. Eng. Appl. Artif. Intell. 60, 45–56 (2017)

    Article  Google Scholar 

  14. Liu, H.C., You, J.X., You, X.Y., et al.: Fuzzy Petri nets using intuitionistic fuzzy sets and ordered weighted averaging operators. IEEE Trans. Cybern. 46(8), 1839–1850 (2015)

    Article  Google Scholar 

  15. Shi, H., Wang, L., Li, X.Y., et al.: A novel method for failure mode and effects analysis using fuzzy evidential reasoning and fuzzy Petri nets. J. Ambient. Intell. Humaniz. Comput. 11(6), 2381–2395 (2020)

    Article  Google Scholar 

  16. Li, X., Yu, W., Lara-Rosano, F.: Dynamic knowledge inference and learning under adaptive fuzzy Petri net framework. IEEE Trans. Syst. Man. Cybern. C 30(4), 442–450 (2000)

    Article  Google Scholar 

  17. Ai, Z., Shu, X., Xu, Z.: Simplified interval-valued intuitionistic fuzzy line integrals and their application. IEEE Access 7, 134256–134270 (2019)

    Article  Google Scholar 

  18. Li, H., You, J.X., Liu, H.C., et al.: Acquiring and sharing tacit knowledge based on interval 2-tuple linguistic assessments and extended fuzzy Petri nets. Internat. J. Uncertain. Fuzz. Knowl.-Based Syst. 26(01), 43–65 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, H., Smarandache, F., Zhang, Y., et al.: Single valued neutrosophic sets. Multispace Multistruct 4, 410–413 (2010)

    MATH  Google Scholar 

  20. Alghamdi, M.A., Alshehri, N.O., Akram, M.: Multi-criteria decision-making methods in bipolar fuzzy environment. Int. J. Fuzzy Syst. 20(6), 2057–2064 (2018)

    Article  Google Scholar 

  21. Habib, S., Butt, M.A., Akram, M., et al.: A neutrosophic clinical decision-making system for cardiovascular diseases risk analysis. J. Intell. Fuzzy Syst. 39(5), 7807–7829 (2020)

    Article  Google Scholar 

  22. Chen, S.M.: Fuzzy backward reasoning using fuzzy Petri nets. IEEE Trans. Syst. Man Cybern. B 30(6), 846–856 (2000)

    Article  Google Scholar 

  23. Meng, F.X., Lei, Y.J., Zhang, B., et al.: Intuitionistic fuzzy Petri nets for knowledge representation and reasoning. J. Digit. Inf. Manag. 14(2), 104–113 (2016)

    Google Scholar 

  24. Wang, W., Liu, X.: Interval-valued intuitionistic fuzzy hybrid weighted averaging operator based on Einstein operation and its application to decision making. J. Intell. Fuzzy Syst. 25(2), 279–290 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peng, J., Wang, J., Wang, J., et al.: Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 47(10), 2342–2358 (2016)

    Article  MATH  Google Scholar 

  26. Akram, M., Shumaiza, Arshad, M.: Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis. Comput. Appl. Math. 39(1), 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  27. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  28. Atanassov, K.T., Parvathi, R.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  29. Smarandache, F.: A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth, DE (1999)

  30. Vafadarnikjoo, A., Mishra, N., Govindan, K., et al.: Assessment of consumers’ motivations to purchase a remanufactured product by applying Fuzzy Delphi method and single valued neutrosophic sets. J. Clean. Prod. 2018(196), 230–244 (2018)

    Article  Google Scholar 

  31. Ye, J.: A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 26(5), 2459–2466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Majumdar, P., Samanta, S.K.: On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 26(3), 1245–1252 (2014)

    Article  MATH  Google Scholar 

  33. Yang, H.L., Zhang, C.L., Guo, Z.L., et al.: A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model. Soft. Comput. 21(21), 6253–6267 (2017)

    Article  MATH  Google Scholar 

  34. Liu, C., Luo, Y.: Power aggregation operators of simplified neutrosophic sets and their use in multi-attribute group decision making. IEEE/CAA J. Autom. Sin. 6(2), 575–583 (2017)

    Article  Google Scholar 

  35. Peng, J., Wang, J., Zhang, H., et al.: An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 25, 336–346 (2014)

    Article  Google Scholar 

  36. Liu, H.C., Liu, L., Lin, Q.L., et al.: Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets. IEEE Trans. Cybern. 43(3), 1059–1072 (2013)

    Article  Google Scholar 

  37. Meirbekova, R., Haarberg, G.M., Thonstad, J., et al.: Influence of sulfur species on current efficiency in the aluminum smelting process. Metall. Mater. Trans. B. 47(2), 1309–1314 (2016)

    Article  Google Scholar 

  38. Xu, X.G., Shi, H., Xu, D.H., et al.: Picture fuzzy Petri nets for knowledge representation and acquisition in considering conflicting opinions. Appl. Sci. 9(5), 983 (2019)

    Article  Google Scholar 

  39. Zhao, S., Xie, Y., Yue, W., et al.: A machine learning method for state identification of superheat degree with flame interference. In: 10th International Symposium on High-Temperature Metallurgical Processing, pp. 199–208. Springer, Cham (2019)

Download references

Acknowledgements

Supported by the National Natural Science Foundation of China (62103378, 62003311); Natural Science Foundation of Henan province (202300410503); Key projects of Science and Technology of Henan Province (212102210506, 202102310284); Innovation incubation project of Zhengzhou University of Light Industry (2020ZGKJ211); The doctoral research fund of Zhengzhou University of Light Industry (2020BSJJ001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxue Wan or Hui He.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, W., Wan, X., Li, S. et al. Simplified Neutrosophic Petri Nets Used for Identification of Superheat Degree. Int. J. Fuzzy Syst. 24, 3431–3455 (2022). https://doi.org/10.1007/s40815-022-01310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01310-2

Keywords

Navigation