Skip to main content

Advertisement

Log in

Performance Enhancement of UPQC Using Takagi–Sugeno Fuzzy Logic Controller

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes Takagi–Sugeno (TS) fuzzy logic controller for three-phase four-wire unified power quality conditioner (UPQC). Here, TS fuzzy controller uses numerical consequent rule, which can be either a linear expression or a constant. In this premise, the efficiency of the proposed controller with linear consequent rules is analyzed for DC-link voltage regulation and hysteresis band calculation of both shunt and series voltage source inverters. Mamdani-type fuzzy logic controller has limitation in providing a broad range of variation in gaining control over UPQC to solve various power quality problems during load transients and source voltage fluctuations. The proposed controller provides a wide range of variation in gaining control, which results in improved tracking performances of UPQC during the transient, unbalanced load and distortions which are observed in the power system. Synchronous reference frame theory is implemented with two steps, viz., Generation of current reference signal and Generation of reference voltage signal. TS controller reduces the complexity using brief computation, whereas Mamdani system involves several fuzzy rules that makes it complicated. To control hysteresis band for shunt and series inverters, the fuzzy logic controller is modeled with the implementation of linear rules. The proposed controller is validated using MATLAB/SIMULINK. Adequate results of comparison with proposed Takagi–Sugeno-type fuzzy controller and Mamdani-type fuzzy controller are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kannan, V.K., Rengarajun, N.: Photovoltaic based three phase three-wire DSTATCOM to improve power quality. J. Sci. Ind. Res. 72(7), 446–453 (2013)

    Google Scholar 

  2. Rao, U.K., Mishra, M.K.: Control strategies for load compensation using instantaneous symmetrical component theory under different supply voltage. IEEE Trans. Power Deliv. 23(4), 2310–2317 (2008)

    Article  Google Scholar 

  3. Vinod, K.: Enhancing electric power quality using UPQC: a comprehensive overview. IEEE Trans. Power Electron. 27(5), 2284–2297 (2012)

    Article  Google Scholar 

  4. El-Habrouk, M., Darwish, M.K., Mehta, P.: Active power filters: a review. Proc. IEEE EPA. 147(5), 403–413 (2000)

    Google Scholar 

  5. Pal, Y., Swarup, A., Singh, B.: New control algorithms for three-phase four-wire unified power quality conditioner—a simulation study. Electr. Power Qual. Utiliz. 16, 1 (2013)

    Google Scholar 

  6. Ansari, A.Q., Singh, B., Hasan, M.: Algorithm for power angle control to improve power quality in distribution system using unified power quality conditioner. IET Gen. Transm. Distrib. 9(12), 1439–1447 (2015)

    Article  Google Scholar 

  7. Yash, P.A., Swarup, A., Bhim, S.:A Comparative Analysis of Three-Phase Four-Wire UPQC Topologies. In: Proceeding of IEEE Joint International Conference on Power Electronics, Drives and Energy Systems, pp 1–6 (2010)

  8. Abdul, Q.A., Bhim, S., Mashhood, H.: Algorithm for power angle control to improve power quality in distribution system using unified power quality conditioner. IET Gen. Transm. Distrib. 9(12), 1439–1447 (2015)

    Article  Google Scholar 

  9. Keerthi, S., Somlal, T.: Role of PI/Fuzzy logic controlled transformerless shunt hybrid power filter using 6-switch 2-leg inverter to ease harmonics in distribution system. Indian J. Sci. Technol. 9(23), 1–7 (2016)

    Google Scholar 

  10. Rajesh, D., Lalitha, S.V.N.L.: A fuzzy controller for compensation of voltage sag/swell problems using reduced rating dynamic voltage restorer. Indian J. Sci. Technol. 8(22), 45–52 (2015)

    Google Scholar 

  11. Abdul, R., Keshava, R.G.: Improvement of power quality for Microgrid using Fuzzy based UPQC controller. Indian J. Sci. Technol. (2015). https://doi.org/10.17485/ijst/2015/v8i23/70751

    Article  Google Scholar 

  12. Kanirajan, P., Suresh, K.V.: Wavelet-based power quality disturbances detection and classification using RBFNN and fuzzy logic. Int. J. Fuzzy Syst. (2015). https://doi.org/10.1007/s40815-015-0045-0

    Article  Google Scholar 

  13. Deng, W., Rui, Y., Huimin, Z., Xinhua, Y., Guangyu, L.: A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. (2017). https://doi.org/10.1007/s00500-017-2940-9

    Article  Google Scholar 

  14. Deng, W., Huimin, Z., Xinhua, Y., Meng, S.B.L.: Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Appl. Soft Comput. 59, 288–302 (2017)

    Article  Google Scholar 

  15. Deng, W., Huimin, Z., Zou, L., Li., G. Xinhua, Y., Daqing, W. : A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput. 2(15), 4387–4398 (2017)

    Article  Google Scholar 

  16. Mitra, R., Goswami, A.K., Tiwari, P.K.: Voltage sag assessment using type-2 fuzzy system considering uncertainties in distribution system. IET Gen. Transm. Distrib. 11(6), 1409–1419 (2017)

    Article  Google Scholar 

  17. Kala, R.M., Rathina, P.N.: Interval type-2 fuzzy logic controller-based multi-level shunt active power line conditioner for harmonic mitigation. Int. J. Fuzzy Syst. 21, 104–114 (2018). https://doi.org/10.1007/s40815-018-0547-7

    Article  MathSciNet  Google Scholar 

  18. Narasimhulu, V., Ashok, K.D.V., Saibabu, C.: Fuzzy logic control of SLMMC-based SAPF under nonlinear loads. Int. J. Fuzzy Syst. 22, 428–437 (2020). https://doi.org/10.1007/s40815-019-00622-0

    Article  Google Scholar 

  19. Sambariya, D.K., Prasad, R.: Selection of membership functions based on fuzzy rules to design an efficient power system stabilizer. R. Int. J. Fuzzy Syst. 18, 813–828 (2017)

    Article  MathSciNet  Google Scholar 

  20. Tamilarasi, D., Sivakumaran, T.S.: Fuzzy PI control of symmetrical and asymmetrical multilevel current source inverter. Int. J. Fuzzy Syst. 20, 426–443 (2018)

    Article  Google Scholar 

  21. Huimin, Z., Rui, Y., Ling, X., Yuan, Y., Guangyu, L., Deng, Wu.: Study on a novel fault damage degree identification method using high-order differential mathematical morphology gradient spectrum entropy. Entropy 20(9), 682 (2018)

    Article  Google Scholar 

  22. Patjoshi, R.K., Kolluru, V.R., Mahapatra, K.: Power quality enhancement using fuzzy sliding mode based pulse width modulation control strategy for unified power quality conditioner. Electr. Power Energy Syst. 84, 153–167 (2017)

    Article  Google Scholar 

  23. Naderian, S.: Salemnia: a method for classification of PQ events based on discrete Gabor Transform with FIR window and T2FK-based SVM and its experimental verification. IET Gen. Transm. Distrib. 10, 382–389 (2017)

    Google Scholar 

  24. Ferhat, U., Omer, F., Alcin, B.D., Fikret, A.: Power quality event detection using a fast extreme learning machine. Energies 11, 145 (2018)

    Article  Google Scholar 

  25. Zhang, L., He, Z., Liv, Y.: Deep object recognition across domains based on adaptive extreme learning machines. Neurocomputing 239, 194–203 (2017)

    Article  Google Scholar 

  26. Huang, G., Huang, G.B., Song, S., You, K.: Tends in extreme learning machines: a review. NeuralNetw. 61, 32–48 (2015)

    MATH  Google Scholar 

  27. Rajakumar, S.K.: An investigation on UPQC based power quality enrichment with AI and swarm intelligence methods. Int. J. Pure Appl. Math. 117(16), 705–712 (2017)

    Google Scholar 

  28. Teke, A., Saribulut, L., Tümay, M.: A novel reference signal generation method for power-quality improvement of unified power-quality conditioner. IEEE Trans. Power Deliv. 26(4), 2205–2214 (2011)

    Article  Google Scholar 

  29. Juan, S., Amin, N., Akhtar, K., Peng, S.: Fuzzy logic control of DSTATCOM for improving power quality and dynamic performance. In: Australasian Universities Power Engineering Conference (AUPEC) (2015)

  30. Bhende, C.N., Mishra, S.: TS-fuzzy-controlled active power filter for load compensation. IEEE Trans. Power Deliv. 21, 1459–1465 (2006)

    Article  Google Scholar 

  31. Ritu, R., Mohan, B.M.: Stability analysis of general Takagi-Sugeno fuzzy two-term controllers. Fuzzy Inf. Eng. 10(2), 196–212 (2018). https://doi.org/10.1080/16168658.2018.1517974

    Article  Google Scholar 

  32. Hafedh, A., Ines, Z., Ahmed, T., Mohamed, C.: T-S fuzzy algorithm for photovoltaic panel. Int. J. Fuzzy Syst. 17, 215–223 (2015)

    Article  MathSciNet  Google Scholar 

  33. Sudheer, V., Venkata, R.K.: Performance analysis of unified power quality conditioner under different power quality issues using dq based control. J. Eng. Res. 5(3), 91–109 (2017)

    Google Scholar 

  34. Rathi, K.M., Rathina, N.: Interval type-2 fuzzy logic controller-based multi-level shunt active power line conditioner for harmonic mitigation. Int. J. Fuzzy Syst. 21, 104–114 (2019). https://doi.org/10.1007/s40815-018-0547-7

    Article  MathSciNet  Google Scholar 

  35. Bhavani, R., Rathina, P.N.: Simulation of reduced rating dynamic voltage restorer using SRF—ANFIS controller. Int. J. Fuzzy Syst. 20, 1808–1820 (2018). https://doi.org/10.1007/s40815-018-0491-6

    Article  Google Scholar 

  36. Rahmani, S., Mendalek, N., Al-Haddad, K.: Experimental design of a nonlinear control technique for three-phase shunt active power filter. IEEE Trans. Ind. Electron. 57(10), 3364–3375 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shamshul Haq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, S.S., Lenine, D. & Lalitha, S.V.N.L. Performance Enhancement of UPQC Using Takagi–Sugeno Fuzzy Logic Controller. Int. J. Fuzzy Syst. 23, 1765–1774 (2021). https://doi.org/10.1007/s40815-021-01095-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01095-w

Keywords

Navigation