Skip to main content
Log in

Improved Type2-NPCM Fuzzy Clustering Algorithm Based on Adaptive Particle Swarm Optimization for Takagi–Sugeno Fuzzy Modeling Identification

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, an improved Type2-NPCM clustering algorithm based on improved adaptive particle swarm optimization called Type2-NPCM-IAPSO is proposed. First, a new clustering algorithm called Type2-NPCM is proposed. The Type2-NPCM algorithm can solve the problems encountered by the algorithms FCM, G-K, PCM and NPCM (sensitivity to noise or aberrant points and local minimal sensitivity), etc. Second, we combined our Type2-NPCM algorithm with the improved adaptive particle swarm optimization IAPSO algorithm to ensure proper convergence to a local minimum of the objective function. The effectiveness of the proposed Type2-NPCM-IAPSO algorithm was tested on the electro-hydraulic system, convection system and other nonlinear systems described by differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

FCM:

Fuzzy c-means algorithm

GK:

Gustafson–Kessel algorithm

PCM:

Possibilistic c-means algorithm

NPCM:

Novel possibilistic c-means algorithm

PSO:

Particle swarm optimization algorithm

IAPSO:

Improved adaptive particle swarm optimization algorithm

GA:

Genetic algorithm

Type2-NPCM:

Novel possibilistic c-means algorithm based on membership function Type2

Type2-NPCM-IAPSO:

Type2-NPCM based on improved adaptive particle swarm optimization

Type2-NPCM-GA:

Type2-NPCM based on Genetic algorithm

WLS:

Weighted last square method

RWLS:

Recursive weighted last square method

MSE:

Average square error test

MSE-trn:

MSE-training data

MSE-test:

MSE-test data

VAF:

Variance accounting test

References

  1. Kim, E., Park, M., Kim, S., Park, M.: A transformed input-domain approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 6(4), 596–604 (1998)

    Article  Google Scholar 

  2. Sugeno, M., Kang, G.T.: Fuzzy modeling and control of multilayer incinerator. Fuzzy Sets Syst. 18, 329–346 (1986). https://doi.org/10.1016/0165-0114(86)90010-2

    Article  MATH  Google Scholar 

  3. Chen, J.Q., Xi, Y.G., Zhang, Z.J.: A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst. 98, 319–329 (1998)

    Article  MathSciNet  Google Scholar 

  4. Li, C., Zhou, J., Xiang, X., Li, Q., An, X.: T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm. Eng. Appl. Artif. Intell. 22, 646–653 (2009)

    Article  Google Scholar 

  5. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1(1), 7–31 (1993). https://doi.org/10.1109/TFUZZ.1993.390281

    Article  Google Scholar 

  6. Ahmed, T., Lassad, H., Abdelkader, C.: Nonlinear system identification using clustering algorithm and particle swarm optimization. Sci. Res. Essays 7(13), 1415–1431 (2012). https://doi.org/10.5897/sre11.1960

    Article  Google Scholar 

  7. Abonyi, J., Babuska, R., Szeifert, F.: Modified gath-geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B 32(5), 612–621 (2002). https://doi.org/10.1109/tsmcb.2002.1033180

    Article  Google Scholar 

  8. Bouzbida, M., Hassine, L., Chaari, A.: Robust Kernel clustering algorithm for nonlinear system identification. Math. Probl. Eng. 2017, Article ID 2427309, 11 pages (2017) https://doi.org/10.1155/2017/2427309

  9. Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. Comput. 21(5), 450–465 (1999). https://doi.org/10.1109/34.765656

    Article  Google Scholar 

  10. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. IEEE World Congr. Comput. Intel., pp. 69–73 (1998)

  11. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE CDC, San Diego, CA, USA, pp. 761–766 (1979)

  12. Lassad, H., Mohamed, B., Ahmed, T., Abdelkader, C.: Improved adaptive particle swarm optimization for optimization functions and clustering fuzzy modeling system. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 26(5), 717–739 (2018). https://doi.org/10.1142/s0218488518500332

    Article  Google Scholar 

  13. Wu, B., Wang, L., Xu, C.: Possibilistic clustering using non-euclidean distance. 978-1-4244-2723-9/09/2009 IEEE

  14. Krishnapuram, R., Keller, J.: The possibilistic c-means algorithm: insights and recommendations. IEEE Trans. Fuzzy Syst. 4(3), 385–393 (1996)

    Article  Google Scholar 

  15. Hwang, C., Rhee, F.C.H.: A type-2 fuzzy C-means clustering algorithm. In: Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569). https://doi.org/10.1109/nafips.2001.944361

  16. Dai Duong H, Nguyen DD, Ngo LT, Tinh LT. An improvement of type-2 fuzzy clustering algorithm for visual fire detection. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. pp. 235–242. ISSN 2150-7988 (2012)

  17. Kamik, N., Mendel, J.: Introduction to type-2 fuzzy logic systems. In: IEEE Conference Fuzzy Syst., pp. 915–920 (1998)

  18. Karnik, N., Mendel, J.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  19. Rashedi, E., Nezamabadi, S., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  20. Eberhart, R.C., Shi, Y.H.: Particle swarm optimization: developments, applications and resources. In Proc. IEEE Congr. Evol. Comput. Seoul, Korea, pp. 81–86 (2001)

  21. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. (1993). https://doi.org/10.1109/tfuzz.1993.390281

    Article  Google Scholar 

  22. Babuska, R.: Fuzzy modeling for control. Kluwer Academic Publishers, Mass. (1998)

    Book  Google Scholar 

  23. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Article  Google Scholar 

  24. Lu, P., Yang, Y., Wenbo, Ma.: Random sampling fuzzy c-means clustering and recursive least square based fuzzy identification. In: Proceedings of the 2006 American control conference

  25. Yao, L., Weng, K.-S.: On a type-2 fuzzy clustering algorithm. In: PATTERNS 2012: The Fourth International Conferences on Pervasive Patterns and Applications

  26. Mendel, J.M.: Comparing the performance potentials of interval and general type-2 rule-based fuzzy systems in terms of sculpting the state space. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/tfuzz.2018.2856184

    Article  Google Scholar 

  27. Mendel, J.M., Hagras, H., Bustince, H., Herrera, F.: Comments on Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: towards a wide view on their relationship. IEEE Trans. Fuzzy Syst. 24(1), 249–250 (2016). https://doi.org/10.1109/tfuzz.2015.2446508

    Article  Google Scholar 

  28. Mendel, J.M., Wu, D.: Critique of “A new look at type-2 fuzzy sets and type-2 fuzzy logic systems”. IEEE Trans. Fuzzy Syst. 25(3), 725–727 (2017). https://doi.org/10.1109/TFUZZ.2017.2648882

    Article  Google Scholar 

  29. Lei, K., Qiu, Y., He, Y.: A new adaptive well-chosen inertia weight strategy to automatically harmonize global and local search ability in particle swarm optimization. In: In Proc. First International Symposium Systems and Control in Aerospace and Astronautics, Harbin, 2006, on pp. 977–980

  30. Kennedy, J., Eberhart, R.C., Shi, Y.H.: Swarm intelligence. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

  31. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  32. Mendel, J.M: Type-2 fuzzy sets as well as computing with words. IEEE Comput. Intell. Mag. 14(1), 82–95, Article number 8610272 (2019) https://doi.org/10.1109/mci.2018.2881646

  33. Rhee, F.C.-H., Hwang, C.: A type-2 fuzzy c-means clustering algorithm. In: Computation Vision and Fuzzy Systems Laboratory. Ansan, Korea7803-7078-3/0U$l0.0(0 C)ml IEEE

  34. Obajemu, O., Mahfouf, M., Torres-Salomao, L.A.: A new interval type-2 fuzzy clustering algorithm for interval type-2 fuzzy modelling with application to heat treatment of steel. In: Proceedings of the 19th World Congress the International Federation of Automatic Control Cape Town, South Africa. August 24–29, 2014

  35. Nelles, O., Fink, A., Isermann: Local Linear Model Trees (LOLIMAT), toolbox for nonlinear system identification. In: IFAC (2000)

  36. Singhal, P., Agarwal, S.K., Kumar, N.: Advanced adaptive particle swarm optimization based SVC controller for power system stability. Int. J. Intell. Syst. Appl. 01, 101–110 (2015)

    Google Scholar 

  37. Zhang, Q., Bi, Y., Gong, Z.: Type-2 kernelized fuzzy c-means algorithm based on the uncertain width of Gaussian kernel with applications in MR image segmentation. In: 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015)

  38. Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122(2), 327–348 (2001). https://doi.org/10.1016/s0165-0114(00)00079-8

    Article  MathSciNet  MATH  Google Scholar 

  39. Bidyadhar, S., Debashisha, J.: A differential evolution based neural network approach to nonlinear identification. Appl. Soft Comput. 11(1), 861–871 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lassad Houcine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houcine, L., Bouzbida, M. & Chaari, A. Improved Type2-NPCM Fuzzy Clustering Algorithm Based on Adaptive Particle Swarm Optimization for Takagi–Sugeno Fuzzy Modeling Identification. Int. J. Fuzzy Syst. 22, 2011–2024 (2020). https://doi.org/10.1007/s40815-020-00881-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00881-2

Keywords

Navigation