Skip to main content

Advertisement

Log in

A Hybrid Fuzzy-Genetic Algorithm for Performance Optimization of Cyber Physical Wireless Body Area Networks

International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The use of fuzzy decision-making in datapath selection extends the sensor network lifetime with a uniform distribution of routing load among network nodes. Fuzzy-logic based routing protocols are mostly designed for general wireless sensor networks (WSN). However, such protocols are not compatible with a Wireless Body Area Network (WBAN) comprised of biosensor nodes. WBAN nodes carry inferior computational, communication and energy resources as compared to general WSN nodes. A WBAN routing protocol needs to be designed as per IEEE 802.15.6 WBAN standards to meet high-end QoS requirements of medical applications. This paper presents a fuzzy-logic-based clustering protocol for data routing in WBANs. Nodes are grouped into clusters and cluster head nodes are selected through a Fuzzy-Genetic Algorithm termed as EB-fg-MADM. EB-fg-MADM makes an assessment of dual attributes of each cluster node in terms of node residual energy and CH selection cost. CH selection cost of a node is the forecasted value of network energy consumption if the node acts as a cluster head. EB-fg-MADM utilizes a fuzzy-TOPSIS function which makes a quantitative comparison of cluster nodes and selects the cluster head node possessing the aforementioned attributes closest to their ideally desired values. A Genetic Algorithm-based optimization process adapts the attribute weights for cluster head selection. EB-fg-MADM provides enhanced network lifetime with a uniform distribution of routing load. Protocol performance is obtained in terms of network lifetime, throughput and latency. Results are compared with existing WBAN routing protocols and are found to be better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Zhang, Z., Wang, H., Wang, C., Fang, H.: Interference mitigation for cyber-physical wireless body area network system using social networks. IEEE Trans. Emerg. Top. Comput. 1(1), 121–132 (2013). https://doi.org/10.1109/TETC.2013.2274430

    Article  Google Scholar 

  2. Wu, T., Wu, F., Redouté, J.M., Yuce, M.R.: An autonomous Wireless Body Area Network implementation towards IoT connected healthcare applications. IEEE Access 5, 11413–11422 (2017). https://doi.org/10.1109/ACCESS.2017.2716344

    Article  Google Scholar 

  3. Liu, J., Sohn, J., Kim, S.: Classification of daily activities for the elderly using wearable sensors. J. Healthcare Eng. 2017, 7, Article ID 8934816 (2017). https://doi.org/10.1155/2017/8934816

  4. Tauqir A., Javaid, N., Akram, S., Rao, A., Mohammad, S. N.: Distance aware relaying energy-efficient: DARE to monitor patients in multi-hop body area sensor networks. In: 2013 eighth international conference on broadband and wireless computing, communication and applications, Compiegne, pp. 206–213 (2013). https://doi.org/10.1109/bwcca.2013.40

  5. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., Verdone, R.: A survey on wireless body area networks: technologies and design challenges. IEEE Commun. Surv. Tutor. 16(3), 1635–1657 (2014). https://doi.org/10.1109/surv.2014.012214.00007

    Article  Google Scholar 

  6. Yang, Y.H.: Channel modelling for WBANs. Appl. Mech. Mater. 246–247, 346–350 (2013)

    Google Scholar 

  7. Zuhra, F.T., Bakar, K.A., Ahmed, A., Tunio, M.A.: Routing protocols in wireless body sensor networks: a comprehensive survey. J. Netw. Comput. Appl. 1, 1 (2017). https://doi.org/10.1016/j.jnca.2017.10.002

    Article  Google Scholar 

  8. Wu, T., Lin, C.: Low-SAR path discovery by particle swarm optimization algorithm in wireless body area networks. IEEE Sens. J. 15(2), 928–936 (2015). https://doi.org/10.1109/JSEN.2014.2354983

    Article  Google Scholar 

  9. Ul Huque, M.T.I., Munasinghe, K.S., Jamalipour, A.: Body node coordinator placement algorithms for wireless body area networks. IEEE Intern. Things J. 2(1), 94–102 (2015). https://doi.org/10.1109/jiot.2014.2366110

    Article  Google Scholar 

  10. Patel, M., Wang, J.: Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel. Commun. 17(1), 80–88 (2010). https://doi.org/10.1109/MWC.2010.5416354

    Article  Google Scholar 

  11. Sample Data. (2018) http://www.shimmersensing.com/support/sample-data/

  12. Akyildiz, I.F., Su, W., Sankara Subramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002). (ISSN 1389-1286)

    Article  Google Scholar 

  13. Kaur, N., Singh, S.: Optimized cost effective and energy efficient routing protocol for wireless body area networks. Ad. Hoc. Netw. (2017). https://doi.org/10.1016/j.adhoc.2017.03.008

    Article  Google Scholar 

  14. Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutor. 15(2), 551–591 (2013). https://doi.org/10.1109/surv.2012.062612.00084

    Article  Google Scholar 

  15. Khan, R.A., Mohammadani, K.H., Soomro, A.A., Hussain, J., Khan, S., Arain, T.H., Zafar, H.: An energy efficient routing protocol for wireless body area sensor networks. Wirel. Personal Commun. (2018). https://doi.org/10.1007/s11277-018-5285-5

    Article  Google Scholar 

  16. Nadeem, Q., Javaid, N., Mohammad, S.N., Khan, M.Y., Sarfraz, S., Gull, M.: SIMPLE: stable increased-throughput multi-hop protocol for link efficiency in wireless body area networks. In Proceedings of the 2013 eighth international conference on broadband and wireless computing, communication and applications, Compiegne, Compiegne, France, 2013, pp. 221–226. https://doi.org/10.1109/bwcca.2013.42

  17. Ullah, Z., Ahmed, I., Razzaq, K., Naseer, M.K., Ahmed, N.: DSCB: dual sink approach using clustering in body area network. Peer-to-Peer Netw. Appl. (2017). https://doi.org/10.1007/s12083-017-0587-z

    Article  Google Scholar 

  18. Azad, P., Sharma, V.: Cluster head selection in wireless sensor networks under fuzzy environment. ISRN Sens. Netw. 2013, 8. Article ID 909086. https://doi.org/10.1155/2013/909086

  19. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences—(HICSS ‘00), Washington DC, USA, 2000, vol. 2, pp. 10, IEEE Computer Society. https://doi.org/10.1109/hicss.2000.926982

  20. Introduction to multiple attribute decision-making (MADM) methods. In: Decision Making in the Manufacturing Environment. Springer Series in Advanced Manufacturing. Springer, London. (2007). https://doi.org/10.1007/978-1-84628-819-7_3

  21. Kim, Y.H., Ahn, S.C., Kwon, W.H.: Computational complexity of general fuzzy logic control and its simplification for a loop controller. Fuzzy Sets Syst. 111(2), 215–224 (2000). https://doi.org/10.1016/S0165-0114(97)00409-0. (ISSN 0165-114)

    Article  MathSciNet  Google Scholar 

  22. Balaji, S., Golden Julie, E., Harold Robinson, Y.: Development of fuzzy based energy efficient cluster routing protocol to increase the lifetime of wireless sensor networks. Mobile Netw Appl 24, 394 (2019). https://doi.org/10.1007/s11036-017-0913-y

    Article  Google Scholar 

  23. Ayati, M., Ghayyoumi, M.H., Keshavarz-Mohammadiyan, A.: A fuzzy three-level clustering method for lifetime improvement of wireless sensor networks. Ann. Telecommun. 73(7–8), 535–546 (2018). https://doi.org/10.1007/s12243-018-0631-x

    Article  Google Scholar 

  24. Lee, J.S., Cheng, W.L.: Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. Sens. J. IEEE 12, 2891–2897 (2012). https://doi.org/10.1109/JSEN.2012.2204737

    Article  Google Scholar 

  25. Mehra, P., Doja, M., Alam, B.: Fuzzy based enhanced cluster head selection (FBECS) for WSN. J. King Saud Univ. Sci. (2018). https://doi.org/10.1016/j.jksus.2018.04.031

    Article  Google Scholar 

  26. Junior, F.R.L., Osiro, L., Carpinetti, L.C.R.: A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 21, 194–209 (2014). https://doi.org/10.1016/j.asoc.2014.03.014. (ISSN 1568-4946)

    Article  Google Scholar 

  27. Velasquez, M., Hester, P.: An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10, 56–66 (2013)

    MathSciNet  Google Scholar 

  28. Fishburn, P.C.: Additive utilities with incomplete product sets: application to priorities and assignments. Oper. Res. 15(3), 537–542 (1967)

    Article  Google Scholar 

  29. Miller DW, Starr MK (1969) Executive decisions with operations research. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar

  30. Cables, E., García-Cascales, M.S., Lamata, M.T.: The LTOPSIS: an alternative to TOPSIS decision-making approach for linguistic variables. Expert Syst. Appl. 39(2), 2119–2126 (2012). https://doi.org/10.1016/j.eswa.2011.07.119. (ISSN 0957-4174)

    Article  Google Scholar 

  31. Maurya, S., Jain, V.K.: Energy-efficient network protocol for precision agriculture: using threshold sensitive sensors for optimal performance. IEEE Cons. Electr. Mag. 6(3), 42–51 (2017). https://doi.org/10.1109/mce.2017.2684960

    Article  Google Scholar 

  32. Preeth, S.K.S.L., Dhanalakshmi, R., Kumar, R., et al.: An adaptive fuzzy rule based energy efficient clustering and immune-inspired routing protocol for WSN-assisted IoT system. J. Ambient Intell. Human. Comput. (2018). https://doi.org/10.1007/s12652-018-1154-z

    Article  Google Scholar 

  33. Javaid, N., Ahmad, A., Nadeem, Q., Imran, M., Haider, N.: iM-SIMPLE: iMproved stable increased-throughput multi-hop link efficient routing protocol for Wireless Body Area Networks. Comput. Hum. Behav. 51, 1003–1011 (2015)

    Article  Google Scholar 

  34. Ahmed, L.S., Javaid, N., Akbar, M., Iqbal, A., Khan, Z., Qasim, U.: LAEEBA: link aware and energy efficient scheme for body area networks. In: Proceedings of the IEEE international conference on advanced information networking and applications (AINA), Victoria, BC, Canada, 2014, pp. 435–440. https://doi.org/10.1109/aina.2014.54

  35. Ahmed, S., Javaid, N., Yousaf, S., Ahmad, A., Sandhu, M.M., Imran, M., Khan, Z.A., Alrajeh, N.: Co-LAEEBA: cooperative link aware and energy efficient protocol for wireless body area networks. Comput Hum. Behav. 51(1), 1205–1215 (2015). https://doi.org/10.1016/j.chb.2014.12.051

    Article  Google Scholar 

  36. Javaid, N., Abbas, Z., Fareed, M.S., Khan, Z.A., Alrajeh, N.: M-ATTEMPT: a new energy-efficient routing protocol for wireless body area sensor networks. Elsevier Proc. Comput. Sci. 19, 224–231 (2013). (ISSN 1877-0509)

    Article  Google Scholar 

  37. Javaid, N., Ahmad, A., Khan, Y., et al.: Wirel. Pers. Commun. 80, 1063 (2015). https://doi.org/10.1007/s11277-014-2071-x

    Article  Google Scholar 

  38. Ullah, F., Ullah, Z., Ahmad, S., et al.: Traffic priority based delay-aware and energy efficient path allocation routing protocol for wireless body area network. J. Ambient Intell. Hum. Comput. (2019). https://doi.org/10.1007/s12652-019-01343-w

    Article  Google Scholar 

  39. El Hajji, F., Leghris, C., Douzi, K.J.: Adaptive routing protocol for lifetime maximization in multi-constraint wireless sensor networks. Commun. Inf. Netw. 3, 67 (2018). https://doi.org/10.1007/s41650-018-0008-3

    Article  Google Scholar 

  40. Khan, B., Bilal, R., Young, R.: Fuzzy-TOPSIS based Cluster Head selection in mobile wireless sensor networks. J. Electr. Syst. Inf. Technol. (2017). https://doi.org/10.1016/j.jesit.2016.12.004

    Article  Google Scholar 

  41. Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H.K., Riad, A.M.: Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun. Lett. 19(12), 2194–2197 (2015). https://doi.org/10.1109/LCOMM.2014.2381226

    Article  Google Scholar 

  42. Xie, W.X., Zhang, Q.Y., Sun, Z.M., et al.: A clustering routing protocol for WSN based on type-2 fuzzy logic and ant colony optimization. Wirel. Pers. Commun. 84, 1165 (2015). https://doi.org/10.1007/s11277-015-2682-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, A., Nizamuddin, M. & Sachan, V.K. A Hybrid Fuzzy-Genetic Algorithm for Performance Optimization of Cyber Physical Wireless Body Area Networks. Int. J. Fuzzy Syst. 22, 548–569 (2020). https://doi.org/10.1007/s40815-019-00751-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00751-6

Keywords

Navigation