Advertisement

Self-Evolving Interval Type-2 Wavelet Cerebellar Model Articulation Control Design for Uncertain Nonlinear Systems Using PSO

  • Tien-Loc Le
  • Tuan-Tu Huynh
  • Chih-Min LinEmail author
Article
  • 16 Downloads

Abstract

This paper aims to propose a design method of interval type-2 wavelet cerebellar model articulation controller (IT2WCMAC) and applies it to control uncertain nonlinear systems. The proposed controller incorporates an IT2WCMAC as the main controller to mimic an ideal controller, and a robust compensator is used to eliminate the approximation error between the IT2WCMAC and the ideal controller. The self-evolving algorithm is used to automatically construct the network structure from the blank rule-base. In the proposed control scheme, the steepest descent gradient algorithm is applied to online tune the network parameters, and a Lyapunov stability theorem is applied to guarantee the system’s stability. Moreover, the learning rates of the parameter adaptive laws can be optimized by the particle swarm optimization (PSO) to promote the parameter learning efficiency. Finally, the proposed control system is applied to control nonlinear chaotic systems to verify the control performance and to show the superiority of the proposed algorithm than the other control methods.

Keywords

Cerebellar model articulation control Type-2 fuzzy system Particle swarm optimization Self-evolving algorithm Chaotic system 

Notes

Acknowledgements

The authors appreciate the financial support in part from the Ministry of Science and Technology of Republic of China under Grant MOST 106-2221-E-155-002-MY3.

References

  1. 1.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hebb, D.: The organization of behavior. Wiley, New York (1949)Google Scholar
  3. 3.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gu, J., Pan, Y., Wang, H.: Research on the improvement of image edge detection algorithm based on artificial neural network. Optik Int. J. Light Electron Opt. 126, 2974–2978 (2015)CrossRefGoogle Scholar
  5. 5.
    Chiang, H.-K., Fang, C.-C., Hsu, F.-J.: The neural sliding mode controller design of fan-plate system. Artif. Life Robot. 21, 49–56 (2016)CrossRefGoogle Scholar
  6. 6.
    Han, Y.-Q.: Adaptive tracking control of nonlinear systems with dynamic uncertainties using neural network. Int. J. Syst. Sci. 49, 1391–1402 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29, 1174–1186 (2018)CrossRefGoogle Scholar
  8. 8.
    Zeng, G.-Q., Xie, X.-Q., Chen, M.-R., Weng, J.: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems. Swarm Evol. Comput. (2018).  https://doi.org/10.1016/j.swevo.2018.04.008 Google Scholar
  9. 9.
    Fang, Y., Fei, J., Ma, K.: Model reference adaptive sliding mode control using RBF neural network for active power filter. Int. J. Electr. Power Energy Syst. 73, 249–258 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, L., Liu, M., Huang, X., Fu, S., Qiu, J.: Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures. IEEE Trans. Fuzzy Syst. 26, 1311–1323 (2018)Google Scholar
  11. 11.
    Lin, C.-M., Lin, M.-H., Yeh, R.-G.: Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput. Appl. 23(3–4), 965–973 (2013)CrossRefGoogle Scholar
  12. 12.
    Lu, H.-C., Chuang, C.-Y.: Robust parametric CMAC with self-generating design for uncertain nonlinear systems. Neurocomputing 74(4), 549–562 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, J.-G., Tai, S.-C., Lin, C.-J.: The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in color images. Neural Comput. Appl. 29, 201–213 (2018)CrossRefGoogle Scholar
  14. 14.
    Wang, J.-G., Tai, S.-C., Lin, C.-J.: Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. In: Proc. IJCNN, 2014, pp. 4092–4098Google Scholar
  15. 15.
    Guan, J.-S., Lin, L.-Y., Ji, G.L., Lin, C.-M., Le, T.-L., Rudas, I.J.: Breast tumor computer-aided diagnosis using self-validating cerebellar model neural networks. Acta Polytechn. Hungarica 13, 39–52 (2016)Google Scholar
  16. 16.
    Lin, Y.Y., Liao, S.H., Chang, J.Y., Lin, C.T.: Simplified interval type-2 fuzzy neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 959–969 (2014)CrossRefGoogle Scholar
  17. 17.
    Castillo, O., Martínez-Marroquín, R., Melin, P., Valdez, F., Soria, J.: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. 192, 19–38 (2012)CrossRefGoogle Scholar
  18. 18.
    Mendel, J.M.: A quantitative comparison of interval type-2 and type-1 fuzzy logic systems: first results. In: Proc. FUZZ-IEEE, 2010, pp. 1–8Google Scholar
  19. 19.
    Oh, S.-K., Jang, H.-J., Pedrycz, W.: A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization. Expert Syst. Appl. 38(9), 11217–11229 (2011)CrossRefGoogle Scholar
  20. 20.
    Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  21. 21.
    Lin, C.-M., Le, T.-L.: WCMAC-based control system design for nonlinear systems using PSO. J. Intell. Fuzzy Syst. 33(2), 807–818 (2017)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hsu, C.F., Lin, C.M., Lee, T.T.: Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans. Neural Netw. 17(5), 1175–1183 (2006)CrossRefGoogle Scholar
  23. 23.
    Mai, T., Wang, Y.: Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Trans. Control Syst. Technol. 22(5), 1973–1982 (2014)CrossRefGoogle Scholar
  24. 24.
    Hung, Y.-C., Lin, F.-J., Hwang, J.-C., Chang, J.-K., Ruan, K.-C.: Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution. IEEE Trans. Power Electron. 30, 2350–2362 (2015)CrossRefGoogle Scholar
  25. 25.
    Seo, Y., Kim, S., Kisi, O., Singh, V.P.: Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 520, 224–243 (2015)CrossRefGoogle Scholar
  26. 26.
    Chui, C.K.: An introduction to wavelets. Academic Press, San Diego (2016)zbMATHGoogle Scholar
  27. 27.
    Lin, C.-M., Le, T.-L.: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1362–1374 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lin, Y.-Y., Chang, J.-Y., Lin, C.-T.: Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 310–321 (2013)CrossRefGoogle Scholar
  29. 29.
    Han, H., Wu, X., Liu, Z., Qiao, J.: Design of self-organizing intelligent controller using fuzzy neural network. IEEE Trans. Fuzzy Syst. (2017).  https://doi.org/10.1109/tfuzz.2017.2785812 Google Scholar
  30. 30.
    Han, H.-G., Lin, Z.-L., Qiao, J.-F.: Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm. Neurocomputing 266(29), 566–578 (2017)CrossRefGoogle Scholar
  31. 31.
    Chen, S.-Y., Liu, T.-S.: Intelligent tracking control of a PMLSM using self-evolving probabilistic fuzzy neural network. IET Electr. Power Appl. 11(6), 1043–1054 (2017)CrossRefGoogle Scholar
  32. 32.
    Lin, C.-M., Le, T.-L., Huynh, T.-T.: Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275, 2239–2250 (2018)CrossRefGoogle Scholar
  33. 33.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE conf. neural network, vol. 4, pp. 1942–1948 (1995)Google Scholar
  34. 34.
    Gao, W.-F., Liu, S.-Y.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012)CrossRefzbMATHGoogle Scholar
  35. 35.
    Zheng, Y.-J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. 55, 1–11 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)CrossRefGoogle Scholar
  37. 37.
    Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)CrossRefGoogle Scholar
  38. 38.
    Du, K.-L., Swamy, M.: Ant colony optimization. In: Search and optimization by metaheuristics. Springer, 2016, pp. 191–199Google Scholar
  39. 39.
    Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)CrossRefGoogle Scholar
  40. 40.
    Nagaraj, B., Murugananth, N.: A comparative study of PID controller tuning using GA, EP, PSO and ACO. In: Proc. ICCCCT, 2010, pp. 305–313Google Scholar
  41. 41.
    Le, T.-L., Lin, C.-M., Huynh, T.-T.: Self-evolving type-2 fuzzy brain emotional learning control design for chaotic systems using PSO. Appl. Soft Comput. 73, 418–433 (2018)CrossRefGoogle Scholar
  42. 42.
    Hasanipanah, M., Amnieh, H.B., Arab, H., Zamzam, M.S.: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput. Appl. 30(4), 1015–1024 (2018)CrossRefGoogle Scholar
  43. 43.
    Wu, L., Gao, H.: Sliding mode control of two-dimensional systems in Roesser model. IET Control Theory Appl. 2(4), 352–364 (2008)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017)CrossRefGoogle Scholar
  45. 45.
    Zheng, E.H., Xiong, J.J., Luo, J.L.: Second order sliding mode control for a quadrotor UAV. ISA Trans. 53(4), 1350–1356 (2014)CrossRefGoogle Scholar
  46. 46.
    Mobayen, S., Tchier, F.: Synchronization of a class of uncertain chaotic systems with Lipschitz nonlinearities using state-feedback control design: a matrix inequality approach. Asian J. Control 20(1), 71–85 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ditto, W., Munakata, T.: Principles and applications of chaotic systems. Commun. ACM 38(11), 96–102 (1995)CrossRefGoogle Scholar
  48. 48.
    Chen, X., Park, J.H., Cao, J., Qiu, J.: Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273, 9–21 (2018)CrossRefGoogle Scholar
  49. 49.
    Chen, S., Yu, S., Lü, J., Chen, G., He, J.: Design and FPGA-based realization of a chaotic secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2359–2371 (2017)CrossRefGoogle Scholar
  50. 50.
    Çavuşoğlu, Ü., Kaçar, S., Pehlivan, I., Zengin, A.: Secure image encryption algorithm design using a novel chaos based S-Box. Chaos Solitons Fractals 95, 92–101 (2017)CrossRefzbMATHGoogle Scholar
  51. 51.
    Lan, R., He, J., Wang, S., Gu, T., Luo, X.: Integrated chaotic systems for image encryption. Signal Process. 147, 133–145 (2018)CrossRefGoogle Scholar
  52. 52.
    Ha, S., Liu, H., Li, S., Liu, A.: Backstepping-based adaptive fuzzy synchronization control for a class of fractional-order chaotic systems with input saturation. Int. J. Fuzzy Syst. (2019).  https://doi.org/10.1007/s40815-019-00663-5 MathSciNetGoogle Scholar
  53. 53.
    Pan, Y., Aranovskiy, S., Bobtsov, A., Yu, H.: Efficient learning from adaptive control under sufficient excitation. Int. J. Robust Nonlinear Control. (2019).  https://doi.org/10.1002/rnc.4541 MathSciNetzbMATHGoogle Scholar
  54. 54.
    Adetola, V., Guay, M.: Performance improvement in adaptive control of linearly parameterized nonlinear systems. IEEE Trans. Autom. Control 55(9), 2182–2186 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Lin, F.-J., Teng, L.-T., Chu, H.: A robust recurrent wavelet neural network controller with improved particle swarm optimization for linear synchronous motor drive. IEEE Trans. Power Electron. 23(6), 3067–3078 (2008)CrossRefGoogle Scholar
  56. 56.
    Slotine, J.-J.E., Li, W.: Applied nonlinear control. Prentice Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  57. 57.
    Yan, J.-J., Shyu, K.-K., Lin, J.-S.: Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity. Chaos Solitons Fractals 25(2), 347–355 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Lin, C.-M., Li, H.-Y.: Self-organizing adaptive wavelet CMAC backstepping control system design for nonlinear chaotic systems. Nonlinear Anal. Real World Appl. 14(1), 206–223 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurcation Chaos 12(12), 2917–2926 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.Yuan Ze UniversityTaoyüanTaiwan
  2. 2.Department of Electrical Electronic and Mechanical EngineeringLac Hong UniversityBien HoaVietnam

Personalised recommendations