Skip to main content
Log in

Self-Evolving Interval Type-2 Wavelet Cerebellar Model Articulation Control Design for Uncertain Nonlinear Systems Using PSO

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper aims to propose a design method of interval type-2 wavelet cerebellar model articulation controller (IT2WCMAC) and applies it to control uncertain nonlinear systems. The proposed controller incorporates an IT2WCMAC as the main controller to mimic an ideal controller, and a robust compensator is used to eliminate the approximation error between the IT2WCMAC and the ideal controller. The self-evolving algorithm is used to automatically construct the network structure from the blank rule-base. In the proposed control scheme, the steepest descent gradient algorithm is applied to online tune the network parameters, and a Lyapunov stability theorem is applied to guarantee the system’s stability. Moreover, the learning rates of the parameter adaptive laws can be optimized by the particle swarm optimization (PSO) to promote the parameter learning efficiency. Finally, the proposed control system is applied to control nonlinear chaotic systems to verify the control performance and to show the superiority of the proposed algorithm than the other control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  2. Hebb, D.: The organization of behavior. Wiley, New York (1949)

    Google Scholar 

  3. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    MATH  Google Scholar 

  4. Gu, J., Pan, Y., Wang, H.: Research on the improvement of image edge detection algorithm based on artificial neural network. Optik Int. J. Light Electron Opt. 126, 2974–2978 (2015)

    Google Scholar 

  5. Chiang, H.-K., Fang, C.-C., Hsu, F.-J.: The neural sliding mode controller design of fan-plate system. Artif. Life Robot. 21, 49–56 (2016)

    Google Scholar 

  6. Han, Y.-Q.: Adaptive tracking control of nonlinear systems with dynamic uncertainties using neural network. Int. J. Syst. Sci. 49, 1391–1402 (2018)

    MathSciNet  Google Scholar 

  7. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29, 1174–1186 (2018)

    Google Scholar 

  8. Zeng, G.-Q., Xie, X.-Q., Chen, M.-R., Weng, J.: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems. Swarm Evol. Comput. (2018). https://doi.org/10.1016/j.swevo.2018.04.008

    Article  Google Scholar 

  9. Fang, Y., Fei, J., Ma, K.: Model reference adaptive sliding mode control using RBF neural network for active power filter. Int. J. Electr. Power Energy Syst. 73, 249–258 (2015)

    Google Scholar 

  10. Chen, L., Liu, M., Huang, X., Fu, S., Qiu, J.: Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures. IEEE Trans. Fuzzy Syst. 26, 1311–1323 (2018)

    Google Scholar 

  11. Lin, C.-M., Lin, M.-H., Yeh, R.-G.: Synchronization of unified chaotic system via adaptive wavelet cerebellar model articulation controller. Neural Comput. Appl. 23(3–4), 965–973 (2013)

    Google Scholar 

  12. Lu, H.-C., Chuang, C.-Y.: Robust parametric CMAC with self-generating design for uncertain nonlinear systems. Neurocomputing 74(4), 549–562 (2011)

    Google Scholar 

  13. Wang, J.-G., Tai, S.-C., Lin, C.-J.: The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in color images. Neural Comput. Appl. 29, 201–213 (2018)

    Google Scholar 

  14. Wang, J.-G., Tai, S.-C., Lin, C.-J.: Medical diagnosis applications using a novel interactively recurrent self-evolving fuzzy CMAC model. In: Proc. IJCNN, 2014, pp. 4092–4098

  15. Guan, J.-S., Lin, L.-Y., Ji, G.L., Lin, C.-M., Le, T.-L., Rudas, I.J.: Breast tumor computer-aided diagnosis using self-validating cerebellar model neural networks. Acta Polytechn. Hungarica 13, 39–52 (2016)

    Google Scholar 

  16. Lin, Y.Y., Liao, S.H., Chang, J.Y., Lin, C.T.: Simplified interval type-2 fuzzy neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 959–969 (2014)

    Google Scholar 

  17. Castillo, O., Martínez-Marroquín, R., Melin, P., Valdez, F., Soria, J.: Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci. 192, 19–38 (2012)

    Google Scholar 

  18. Mendel, J.M.: A quantitative comparison of interval type-2 and type-1 fuzzy logic systems: first results. In: Proc. FUZZ-IEEE, 2010, pp. 1–8

  19. Oh, S.-K., Jang, H.-J., Pedrycz, W.: A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization. Expert Syst. Appl. 38(9), 11217–11229 (2011)

    Google Scholar 

  20. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Google Scholar 

  21. Lin, C.-M., Le, T.-L.: WCMAC-based control system design for nonlinear systems using PSO. J. Intell. Fuzzy Syst. 33(2), 807–818 (2017)

    MATH  Google Scholar 

  22. Hsu, C.F., Lin, C.M., Lee, T.T.: Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans. Neural Netw. 17(5), 1175–1183 (2006)

    Google Scholar 

  23. Mai, T., Wang, Y.: Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot. IEEE Trans. Control Syst. Technol. 22(5), 1973–1982 (2014)

    Google Scholar 

  24. Hung, Y.-C., Lin, F.-J., Hwang, J.-C., Chang, J.-K., Ruan, K.-C.: Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution. IEEE Trans. Power Electron. 30, 2350–2362 (2015)

    Google Scholar 

  25. Seo, Y., Kim, S., Kisi, O., Singh, V.P.: Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 520, 224–243 (2015)

    Google Scholar 

  26. Chui, C.K.: An introduction to wavelets. Academic Press, San Diego (2016)

    MATH  Google Scholar 

  27. Lin, C.-M., Le, T.-L.: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1362–1374 (2017)

    MathSciNet  Google Scholar 

  28. Lin, Y.-Y., Chang, J.-Y., Lin, C.-T.: Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 310–321 (2013)

    Google Scholar 

  29. Han, H., Wu, X., Liu, Z., Qiao, J.: Design of self-organizing intelligent controller using fuzzy neural network. IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/tfuzz.2017.2785812

    Article  Google Scholar 

  30. Han, H.-G., Lin, Z.-L., Qiao, J.-F.: Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm. Neurocomputing 266(29), 566–578 (2017)

    Google Scholar 

  31. Chen, S.-Y., Liu, T.-S.: Intelligent tracking control of a PMLSM using self-evolving probabilistic fuzzy neural network. IET Electr. Power Appl. 11(6), 1043–1054 (2017)

    Google Scholar 

  32. Lin, C.-M., Le, T.-L., Huynh, T.-T.: Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275, 2239–2250 (2018)

    Google Scholar 

  33. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE conf. neural network, vol. 4, pp. 1942–1948 (1995)

  34. Gao, W.-F., Liu, S.-Y.: A modified artificial bee colony algorithm. Comput. Oper. Res. 39(3), 687–697 (2012)

    MATH  Google Scholar 

  35. Zheng, Y.-J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. 55, 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Google Scholar 

  37. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Google Scholar 

  38. Du, K.-L., Swamy, M.: Ant colony optimization. In: Search and optimization by metaheuristics. Springer, 2016, pp. 191–199

  39. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  40. Nagaraj, B., Murugananth, N.: A comparative study of PID controller tuning using GA, EP, PSO and ACO. In: Proc. ICCCCT, 2010, pp. 305–313

  41. Le, T.-L., Lin, C.-M., Huynh, T.-T.: Self-evolving type-2 fuzzy brain emotional learning control design for chaotic systems using PSO. Appl. Soft Comput. 73, 418–433 (2018)

    Google Scholar 

  42. Hasanipanah, M., Amnieh, H.B., Arab, H., Zamzam, M.S.: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput. Appl. 30(4), 1015–1024 (2018)

    Google Scholar 

  43. Wu, L., Gao, H.: Sliding mode control of two-dimensional systems in Roesser model. IET Control Theory Appl. 2(4), 352–364 (2008)

    MathSciNet  Google Scholar 

  44. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017)

    Google Scholar 

  45. Zheng, E.H., Xiong, J.J., Luo, J.L.: Second order sliding mode control for a quadrotor UAV. ISA Trans. 53(4), 1350–1356 (2014)

    Google Scholar 

  46. Mobayen, S., Tchier, F.: Synchronization of a class of uncertain chaotic systems with Lipschitz nonlinearities using state-feedback control design: a matrix inequality approach. Asian J. Control 20(1), 71–85 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Ditto, W., Munakata, T.: Principles and applications of chaotic systems. Commun. ACM 38(11), 96–102 (1995)

    Google Scholar 

  48. Chen, X., Park, J.H., Cao, J., Qiu, J.: Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273, 9–21 (2018)

    Google Scholar 

  49. Chen, S., Yu, S., Lü, J., Chen, G., He, J.: Design and FPGA-based realization of a chaotic secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2359–2371 (2017)

    Google Scholar 

  50. Çavuşoğlu, Ü., Kaçar, S., Pehlivan, I., Zengin, A.: Secure image encryption algorithm design using a novel chaos based S-Box. Chaos Solitons Fractals 95, 92–101 (2017)

    MATH  Google Scholar 

  51. Lan, R., He, J., Wang, S., Gu, T., Luo, X.: Integrated chaotic systems for image encryption. Signal Process. 147, 133–145 (2018)

    Google Scholar 

  52. Ha, S., Liu, H., Li, S., Liu, A.: Backstepping-based adaptive fuzzy synchronization control for a class of fractional-order chaotic systems with input saturation. Int. J. Fuzzy Syst. (2019). https://doi.org/10.1007/s40815-019-00663-5

    Article  MathSciNet  Google Scholar 

  53. Pan, Y., Aranovskiy, S., Bobtsov, A., Yu, H.: Efficient learning from adaptive control under sufficient excitation. Int. J. Robust Nonlinear Control. (2019). https://doi.org/10.1002/rnc.4541

    Article  MathSciNet  MATH  Google Scholar 

  54. Adetola, V., Guay, M.: Performance improvement in adaptive control of linearly parameterized nonlinear systems. IEEE Trans. Autom. Control 55(9), 2182–2186 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Lin, F.-J., Teng, L.-T., Chu, H.: A robust recurrent wavelet neural network controller with improved particle swarm optimization for linear synchronous motor drive. IEEE Trans. Power Electron. 23(6), 3067–3078 (2008)

    Google Scholar 

  56. Slotine, J.-J.E., Li, W.: Applied nonlinear control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  57. Yan, J.-J., Shyu, K.-K., Lin, J.-S.: Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity. Chaos Solitons Fractals 25(2), 347–355 (2005)

    MathSciNet  MATH  Google Scholar 

  58. Lin, C.-M., Li, H.-Y.: Self-organizing adaptive wavelet CMAC backstepping control system design for nonlinear chaotic systems. Nonlinear Anal. Real World Appl. 14(1), 206–223 (2013)

    MathSciNet  MATH  Google Scholar 

  59. Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurcation Chaos 12(12), 2917–2926 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support in part from the Ministry of Science and Technology of Republic of China under Grant MOST 106-2221-E-155-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Min Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, TL., Huynh, TT. & Lin, CM. Self-Evolving Interval Type-2 Wavelet Cerebellar Model Articulation Control Design for Uncertain Nonlinear Systems Using PSO. Int. J. Fuzzy Syst. 21, 2524–2541 (2019). https://doi.org/10.1007/s40815-019-00735-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00735-6

Keywords

Navigation