Advertisement

International Journal of Fuzzy Systems

, Volume 21, Issue 3, pp 865–881 | Cite as

Fuzzy Optimal Solution of Fuzzy Number Linear Programming Problems

  • Guixiang WangEmail author
  • Jintao Peng
Article
  • 58 Downloads

Abstract

In this paper, by turning fuzzy number linear programming problem (FNLPP) into interval number linear programming problem, we give the conceptions of the \(r-\)best optimal solution and \(r-\)worst optimal solution of FNLPP. And from this, we finally put forward the definitions of the best fuzzy set and fuzzy number optimal solutions and the worst fuzzy set and fuzzy number optimal solutions of FNLPP. In order to solve fuzzy number linear programming problem in practice, we establish some relevant theories and introduce the definitions of the best fuzzy set and fuzzy number approximate optimal solutions and the worst fuzzy set and fuzzy number approximate optimal solutions of FNLPP. At last, we give two examples to show how to get the best (or worst) fuzzy number (or set) approximate optimal solution of FNLPP by using these established theories.

Keywords

Fuzzy number Fuzzy system mode Fuzzy number linear programming Optimal solution Solutions of fuzzy number linear programming 

Notes

Acknowledgements

This work is partially supported by the Nature Science Foundation of China (Nos. 61771174 and 61433001).

References

  1. 1.
    Buckley, J.J., Feuring, T.: Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy Sets Syst. 109(1), 35–53 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chang, S.S.L., Zadeh, L.A.: On fuzzy mappings and control. IEEE Trans. Syst. Man Cybernet 2, 30–34 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Das, S.K., Mandal, T., Edalatpanah, S.A.: A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl. Intell. 46, 509–519 (2017)CrossRefGoogle Scholar
  4. 4.
    Diamond, P., Kloeden, P.: Metric Space of Fuzzy Sets. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  5. 5.
    Ebrahimnejada, A., Verdegayb, J.L.: A novel approach for sensitivity analysis in linear programs with trapezoidal fuzzy numbers. J. Intell. Fuzzy Syst. 27, 173–185 (2014)MathSciNetGoogle Scholar
  6. 6.
    Ebrahimnejad, A.: Fuzzy linear programming approach for solving transportation problems with interval-valued trapezoidal fuzzy numbers. Sãdhanã 41(3), 299–316 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ezzati, R., Khorram, E., Enayati, R.: A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Appl. Math. Model. 39, 3183–3193 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fan, Y., Huang, G., Veawab, A.: A generalized fuzzy linear programming approach for environmental management problem under uncertainty. J. Air Waste Manag. Assoc. 62(1), 72C86 (2012)CrossRefGoogle Scholar
  9. 9.
    Fan, Y., Huang, G., Yang, A.: Generalized fuzzy linear programming for decision making under uncertainty: feasibility of fuzzy solutions and solving approach. Inf. Sci. 241, 12–27 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ganesan, K., Veeramani, P.: Fuzzy linear programs with trapezoidal fuzzy numbers. Ann. Oper. Res. 143(1), 305–315 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ghaznavi, M., Soleimani, F., Hoseinpoor, N.: Parametric analysis in fuzzy number linear programming problems. Int. J. Fuzzy Syst. 18(3), 463–477 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Inuiguchi, M., Ichihashi, H., Kume, Y.: A solution algorithm for fuzzy linear programming with piecewise linear membership functions. Fuzzy Sets Syst. 34(1), 15–31 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jimnez, M., Arenas, M., Bilbao, A., Rodriguez, M.V.: Linear programming with fuzzy parameters: an interactive method resolution. Eur. J. Oper. Res. 177(3), 1599–1609 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kumar, A., Appadoo, S.S., Bector, C.R.: A note on Generalized fuzzy linear programming for decision making under uncertainty: feasibility of fuzzy solutions and solving approach. Inf. Sci. 266, 226–227 (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kumar, A., Kaur, J., Singh, P.: A new method for solving fully fuzzy linear programming problems. Appl. Math. Model. 35(2), 817–823 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kumar, A., Kaur, J.: Fuzzy optimal solution of fully fuzzy linear programming problems using ranking function. J. Intell. Fuzzy Syst. 26, 337–344 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Li, W.: Linear Optimization and its Extension (in Chinese). National Defense Industry Press, Beijing (2011)Google Scholar
  18. 18.
    Lotfi, F.H., Allahviranloo, T., Jondabeh, M.A., Alizadeh, L.: Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Appl. Math. Model. 33(7), 3151–3156 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Maleki, H.R., Tata, M., Mashinchi, M.: Linear programming with fuzzy variables. Fuzzy Sets Syst. 109(1), 21–33 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nehi, H.M., Maleki, H.R., Mashinchi, M.: Solving fuzzy number linear programming problem by lexicographic ranking function. Italian J. Pure Appl. Math. 15(1), 9–20 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Rommelfanger, H.: Fuzzy linear programming and applications. Eur. J. Oper. Res. 92(3), 512–527 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Stanojević, B.: Extended procedure for computing the values of the membership function of a fuzzy solution to a class of fuzzy linear optimization problems. Fuzzy Sets Syst. 272, 47–59 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stanojević, B., Stanojević, M.: Parametric computation of a fuzzy set solution to a class of fuzzy linear fractional optimization problems. Fuzzy Optim. Decis. Mak. 15, 435–455 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tanaka, H., Asai, K.: Fuzzy linear programming problem with fuzzy numbers. Fuzzy Sets Syst. 13(1), 1–10 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tong, S.: Interval number and fuzzy number linear programmings. Fuzzy Sets Syst. 66(3), 301–306 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, S., Huang, G.H., Lu, H.W., Li, Y.P.: An interval-valued fuzzy linear programming with infinite \(\alpha\)-cuts method for environmental management under uncertainty. Stoch. Environ. Res. Risk Assess. 25(2), 211–222 (2011)CrossRefGoogle Scholar
  27. 27.
    Wang, G., Li, J.: Approximations of fuzzy numbers by step type fuzzy numbers. Fuzzy Sets Syst. 310, 47–59 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, G., Li, Y.: The ranking of multi-dimensional uncertain information based on metrics on the fuzzy ellipsoid number space. IEEE Trans. Fuzzy Syst. 25, 614–626 (2017)CrossRefGoogle Scholar
  29. 29.
    Werners, B.: An interactive fuzzy programming system. Fuzzy Sets Syst. 23(1), 131–147 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang, X., Cao, B., Zhou, X.: Solving fully fuzzy linear programming problems with flexible constraints based on a new order relation. J. Intell. Fuzzy Syst. 29, 1539–1550 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhong, Y., Jiaa, Y., Zhaoa, J., Lina, X., Yanga, Y.: A revised simplex method of solving degenerate fuzzy number linear programming problems. J. Intell. Fuzzy Syst. 29, 2139–2146 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 11(1), 45–55 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association 2019

Authors and Affiliations

  1. 1.Institute of Operations Research and CyberneticsHangzhou Dianzi UniversityHangzhouChina
  2. 2.Zhuoyue Honors CollegeHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations