Skip to main content
Log in

A Generalized TOPSIS Method for Intuitionistic Fuzzy Multiple Attribute Group Decision Making Considering Different Scenarios of Attributes Weight Information

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the technique for order preference by similarity to an ideal solution (TOPSIS) method is extended to solve multiple attribute group decision making (MAGDM) problems under intuitionistic fuzzy environment. The input data involve assessment information about the alternatives, the weights of the decision makers (DMs) provided by the experts, and weights of the multiple attributes. Here, we generalize the TOPSIS method under the realm of both the intuitionistic fuzzy set (IFS) and interval valued intuitionistic fuzzy set (IVIFS), taking into consideration different variations of weights of the attributes provided by the DMs depending upon their psychology, subjectivity and cognitive thinking. The assessment information and attributes weights are aggregated over each decision maker’s weight using weighted arithmetic and weighted geometric operators. The score functions, namely, the advantage and disadvantage scores are implemented to capture the preferences of the DMs in the context of reliability of information. These score functions are based on the positive contribution of the parameters of IFS, i.e. membership, non-membership and hesitation degrees, evaluating the performance of each alternative with the rest on the given attributes. The performance degree of each alternative is then determined to select the preferable alternative using strength and weakness scores as a function of the obtained attribute weight vector. Numerical illustrations in the form of an investment decision making problem are demonstrated in the context of both the IFS and IVIFS, taking different forms of attribute weight information so as to better reflect the working of the proposed methodology. Further, the methodology is compared with some existing works and major highlights of the proposed work are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, B-141–B-164 (1970)

    Article  MathSciNet  Google Scholar 

  3. Zimmermann, H.J.: Fuzzy set theory. Wiley Interdiscip. Rev. Comput. Stat. 2, 317–332 (2010)

    Article  Google Scholar 

  4. Chen, S.J., Hwang, C.L.: Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  5. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  6. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica-Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  7. Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Podinovski, V.V.: Set choice problems with incomplete information about the preferences of the decision maker. Eur. J. Oper. Res. 207, 371–379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Z., Li, K.W., Wang, W.: An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Inf. Sci. 179, 3026–3040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim, S.H., Ahn, B.S.: Interactive group decision making procedure under incomplete information. Eur. J. Oper. Res. 116, 498–507 (1999)

    Article  MATH  Google Scholar 

  11. Park, K.S.: Mathematical programming models for characterizing dominance and potential optimality when multicriteria alternative values and weights are simultaneously incomplete. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34, 601–614 (2004)

    Article  Google Scholar 

  12. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  13. Su, Z.X., Chen, M.Y., Xia, G.P., Wang, L.: An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. Expert Syst. Appl. 38, 15286–15295 (2011)

    Article  Google Scholar 

  14. Aikhuele, D.O., Turan, F.B.M.: Intuitionistic fuzzy-based model for failure detection. SpringerPlus (2016). https://doi.org/10.1186/s40064-016-3446-0

    Google Scholar 

  15. Boran, F.E., Genç, S., Kurt, M., Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36, 11363–11368 (2009)

    Article  Google Scholar 

  16. Liu, H.C., You, J.X., Shan, M.M., Shao, L.N.: Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach. Soft Comput. 19, 1085–1098 (2015)

    Article  Google Scholar 

  17. Rouyendegh, B.D.: The DEA and intuitionistic fuzzy TOPSIS approach to departments’ performances: a pilot study. J. Appl. Math. 2011, Article ID 712194, 16 (2011)

    MATH  Google Scholar 

  18. Yue, Z.: TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting. Inf. Sci. 277, 141–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Büyüközkan, G., Güleryüz, S.: Multi criteria group decision making approach for smart phone selection using intuitionistic fuzzy TOPSIS. Int. J. Comput. Intell. Syst. 9, 709–725 (2016)

    Article  Google Scholar 

  20. Li, D.F., Nan, J.X.: Extension of the TOPSIS for multi-attribute group decision making under Atanassov IFS environments. Int. J. Fuzzy Syst. Appl. 1, 47–61 (2011)

    Article  Google Scholar 

  21. Ye, F.: An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection. Expert Syst. Appl. 37, 7050–7055 (2010)

    Article  Google Scholar 

  22. Park, J.H., Park, I.Y., Kwun, Y.C., Tan, X.: Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 35, 2544–2556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tan, C.: A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert Syst. Appl. 38, 3023–3033 (2011)

    Article  Google Scholar 

  24. Zhang, X., Xu, Z.: Soft computing based on maximizing consensus and fuzzy TOPSIS approach to interval-valued intuitionistic fuzzy group decision making. Appl. Soft Comput. 26, 42–56 (2015)

    Article  Google Scholar 

  25. Izadikhah, M.: Group decision making process for supplier selection with TOPSIS method under interval-valued intuitionistic fuzzy numbers. Adv. Fuzzy Syst. 2012, Article ID 407942, 14 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Wei, C., Zhang, Y.: Entropy measures for interval-valued intuitionistic fuzzy sets and their application in group decision-making. Math. Prob. Eng. 2015, Article ID 563745, 13 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15, 1179–1187 (2007)

    Article  Google Scholar 

  28. Xu, Z., Cai, X.: Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optim. Decis. Mak. 9, 359–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Z.S.: Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decis. 22, 215–219 (2007)

    Google Scholar 

  30. Liu, H.W., Wang, G.J.: Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Eur. J. Oper. Res. 179, 220–233 (2007)

    Article  MATH  Google Scholar 

  31. Gupta, P., Lin, C.T., Mehlawat, M.K., Grover, N.: A new method for intuitionistic fuzzy multiattribute decision making. IEEE Trans. Syst. Man Cybern. Syst. 46, 1167–1179 (2016)

    Article  Google Scholar 

  32. Wang, J.Q., Zhang, H.Y.: Multicriteria decision-making approach based on Atanassov’s intuitionistic fuzzy sets with incomplete certain information on weights. IEEE Trans. Fuzzy Syst. 21, 510–515 (2013)

    Article  Google Scholar 

  33. French, S., Hartley, R., Thomas, L.C., White, D.J.: Multi-Objective Decision Making. Academic Press, New York (1983)

    MATH  Google Scholar 

  34. Wang, Z., Xu, J., Wang, W.: Intuitionistic fuzzy multiple attribute group decision making based on projection method. In: Chinese Control and Decision Conference, IEEE, pp. 2919–2924 (2009)

  35. Meng, F., Chen, X.: Interval-valued intuitionistic fuzzy multi-criteria group decision making based on cross entropy and 2-additive measures. Soft Comput. 19, 2071–2082 (2015)

    Article  MATH  Google Scholar 

  36. Schrage, L.E.: Optimization Modelling with LINGO. LINDO Systems Inc., Chicago (2006)

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Editor-in-chief, Associate Editor, and anonymous referees for their valuable suggestions to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Mehlawat, M.K. & Grover, N. A Generalized TOPSIS Method for Intuitionistic Fuzzy Multiple Attribute Group Decision Making Considering Different Scenarios of Attributes Weight Information. Int. J. Fuzzy Syst. 21, 369–387 (2019). https://doi.org/10.1007/s40815-018-0563-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0563-7

Keywords

Navigation