International Journal of Fuzzy Systems

, Volume 21, Issue 3, pp 978–992 | Cite as

Design of New Sampling Plans for Multiple Manufacturing Lines Under Uncertainty

  • Muhammad AslamEmail author
  • Muhammad Ali Raza


In this study, novel neutrosophic sampling plans for multiple manufacturing lines using traditional and exponentially weighted moving average for process capability index are designed. The neutrosophic optimization solution is used to determine the parameters of these plans. The neutrosophic operating function is given and used to determine the neutrosophic plan parameters at some specified producer’s risk and consumer’s risk. The results are explained with the help of industrial data.


Neutrosophic statistics Complex system Neutrosophic operating function Neutrosophic optimization solution Risk 



The authors are deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality of this manuscript. This article was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah. The author, Muhammad Aslam, therefore, acknowledges with thanks to DSR technical and financial support.


  1. 1.
    Afshari, R., Gildeh, B.S.: Construction of fuzzy multiple deferred state sampling plan. In: Paper Presented at the Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), 2017 Joint 17th World Congress of International (2017)Google Scholar
  2. 2.
    Afshari, R., Gildeh, B.S., Sarmad, M.: Multiple deferred state sampling plan with fuzzy parameter. Int. J. Fuzzy Syst. 20(2), 549–557 (2018)CrossRefzbMATHGoogle Scholar
  3. 3.
    Afshari, R., Sadeghpour Gildeh, B., Sarmad, M.: Fuzzy multiple deferred state attribute sampling plan in the presence of inspection errors. J. Intell. Fuzzy Syst. 33(1), 503–514 (2017)CrossRefzbMATHGoogle Scholar
  4. 4.
    Alaeddini, A., Ghazanfari, M., Nayeri, M.A.: A hybrid fuzzy-statistical clustering approach for estimating the time of changes in fixed and variable sampling control charts. Inf. Sci. 179(11), 1769–1784 (2009)CrossRefGoogle Scholar
  5. 5.
    Arif, O.H., Aslam, M., Jun, C.-H.: Acceptance sampling plan for multiple manufacturing lines using EWMA process capability index. J. Adv. Mech. Des. Syst. Manuf. 11(1), JAMDSM0004 (2017)CrossRefGoogle Scholar
  6. 6.
    Aslam, M.: A new sampling plan using neutrosophic process loss consideration. Symmetry 10(5), 132 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Aslam, M., Azam, M., Jun, C.-H.: Improved acceptance sampling plan based on EWMA statistic. Sequ. Anal. 34(3), 406–422 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Aslam, M., Azam, M., Jun, C.-H.: Sampling plan using EWMA statistic of regression estimator. Iran. J. Sci. Technol. Trans. A Sci. 42(1), 115–127 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Aslam, M., Yen, C.-H., Chang, C.-H., Jun, C.-H.: Multiple states repetitive group sampling plans with process loss consideration. Appl. Math. Model. 37(20), 9063–9075 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Azam, M., Arif, O.H., Aslam, M., Ejaz, W.: Repetitive acceptance sampling plan based on exponentially weighted moving average regression estimator. J. Comput. Theor. Nanosci. 13(7), 4413–4426 (2016)CrossRefGoogle Scholar
  11. 11.
    Balamurali, S., Azam, M., Aslam, M.: Attribute-variable inspection policy for lots using resampling based on EWMA. Commun. Stat. Simul. Comput. 45(8), 3014–3035 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, J., Ye, J., Du, S.: Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9(10), 208 (2017)CrossRefGoogle Scholar
  13. 13.
    Chen, J., Ye, J., Du, S., Yong, R.: Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9(7), 123 (2017)CrossRefGoogle Scholar
  14. 14.
    Cheng, S.-R., Hsu, B.-M., Shu, M.-H.: Fuzzy testing and selecting better processes performance. Ind. Manag. Data Syst. 107(6), 862–881 (2007)CrossRefGoogle Scholar
  15. 15.
    Čisar, P., Čisar, S.M.: Optimization methods of EWMA statistics. Acta Polytechnica Hungarica 8(5), 73–87 (2011)zbMATHGoogle Scholar
  16. 16.
    Divya, P.: Quality interval acceptance single sampling plan with fuzzy parameter using poisson distribution. Int. J. Adv. Res. Technol. 1(3), 115–125 (2012)Google Scholar
  17. 17.
    Elango, S., Venkatesh, A., Sivakumar, G.: A fuzzy mathematical analysis for the effect of trh using acceptance sampling plans. Int. J. Pure Appl. Math. 117(5), 1–11 (2017)Google Scholar
  18. 18.
    Fallah Nezhad, M.S., Akhavan Niaki, S.T.: A new monitoring design for uni-variate statistical quality control charts. Inf. Sci. 180(6), 1051–1059 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jamkhaneh, E.B., Gildeh, B.S.: Acceptance double sampling plan using fuzzy poisson distribution. World Appl. Sci. J. 16(11), 1578–1588 (2012)Google Scholar
  20. 20.
    Jamkhaneh, E.B., Gildeh, B.S.: Sequential sampling plan using fuzzy SPRT. J. Intell. Fuzzy Syst. 25(3), 785–791 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Jamkhaneh, E.B., Sadeghpour-Gildeh, B., Yari, G.: Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidisc. Optim. 43(4), 555–560 (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kanagawa, A., Ohta, H.: A design for single sampling attribute plan based on fuzzy sets theory. Fuzzy Sets Syst. 37(2), 173–181 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lucas, J.M., Saccucci, M.S.: Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1), 1–12 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Montgomery, D.C.: Introduction to Statistical Quality Control. Wiley, New York (2007)zbMATHGoogle Scholar
  25. 25.
    Negrin, I., Parmet, Y., Schechtman, E.: Developing a sampling plan based on Cpk—unknown variance. Qual. Reliab. Eng. Int. 27(1), 3–14 (2011)CrossRefGoogle Scholar
  26. 26.
    Pearn, W., Wu, C.-W.: Critical acceptance values and sample sizes of a variables sampling plan for very low fraction of defectives. Omega 34(1), 90–101 (2006)CrossRefGoogle Scholar
  27. 27.
    Pearn, W., Wu, C.-W.: Variables sampling plans with PPM fraction of defectives and process loss consideration. J. Oper. Res. Soc. 57(4), 450–459 (2006)CrossRefzbMATHGoogle Scholar
  28. 28.
    Pearn, W., Wu, C., Chuang, C.: Product acceptance determination for processes with multiple independent lines. Qual. Reliab. Eng. 30(7), 1075–1082 (2014)CrossRefGoogle Scholar
  29. 29.
    Pearn, W.L., Tai, Y.T., Wu, C.H., Chuang, C.C.: Analytic solution to product acceptance determination for gold bumping process with multiple manufacturing lines. IEEE Trans. Compon. Pack. Manuf. Technol. 3(11), 1980–1986 (2013)CrossRefGoogle Scholar
  30. 30.
    Pearn, W.L., Wu, C.-W.: An effective decision making method for product acceptance. Omega 35(1), 12–21 (2007)CrossRefGoogle Scholar
  31. 31.
    Pearn, W.L., Wu, C.: A close form solution for the product acceptance determination based on the popular index Cpk. Qual. Reliab. Eng. Int. 29(5), 719–723 (2013)CrossRefGoogle Scholar
  32. 32.
    Perrot, N., Baudrit, C., Brousset, J.M., Abbal, P., Guillemin, H., Perret, B., Picque, D.: A decision support system coupling fuzzy logic and probabilistic graphical approaches for the agri-food industry: prediction of grape berry maturity. PLoS ONE 10(7), e0134373 (2015)CrossRefGoogle Scholar
  33. 33.
    Sadeghpour Gildeh, B., Baloui Jamkhaneh, E., Yari, G.: Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 8(2), 47–55 (2011)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Smarandache, F.: Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability. In: Infinite Study (2013)Google Scholar
  35. 35.
    Tai, Y., Pearn, W., Kao, C.-M.: Measuring the manufacturing yield for processes with multiple manufacturing lines. IEEE Trans. Semicond. Manuf. 25(2), 284–290 (2012)CrossRefGoogle Scholar
  36. 36.
    Tamaki, F., Kanagawa, A., Ohta, H.: A fuzzy design of sampling inspection plans by attributes. J. Jpn. Soc. Fuzzy Theory Syst. 3(4), 211–212 (1991)MathSciNetGoogle Scholar
  37. 37.
    Turanoğlu, E., Kaya, İ., Kahraman, C.: Fuzzy acceptance sampling and characteristic curves. Int. J. Comput. Intell. Syst. 5(1), 13–29 (2012)CrossRefGoogle Scholar
  38. 38.
    Venkateh, A., Elango, S.: Acceptance sampling for the influence of TRH using crisp and fuzzy gamma distribution. Aryabhatta J. Math. Inform. 6(1), 119–124 (2014)Google Scholar
  39. 39.
    Wang, F.K., Huang, C.Y., Tamirat, Y.: Implementing EWMA yield index for simple linear profiles with one-sided specifications in product acceptance determination. Qual. Reliab. Eng. Int. 33(2), 401–412 (2017)CrossRefGoogle Scholar
  40. 40.
    Wu, C.-W., Aslam, M., Jun, C.-H.: Developing a variables two-plan sampling system for product acceptance determination. Commun. Stat. Theory Methods 46(2), 706–720 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wu, C.-W., Pearn, W.L.: A variables sampling plan based on Cpmk for product acceptance determination. Eur. J. Oper. Res. 184(2), 549–560 (2008)CrossRefzbMATHGoogle Scholar
  42. 42.
    Yen, C.-H., Aslam, M., Jun, C.-H.: A lot inspection sampling plan based on EWMA yield index. Int. J. Adv. Manuf. Technol. 75(5–8), 861–868 (2014)CrossRefGoogle Scholar
  43. 43.
    Yen, C.-H., Chang, C.-H., Aslam, M.: Repetitive variable acceptance sampling plan for one-sided specification. J. Stat. Comput. Simul. 85(6), 1102–1116 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zarandi, M.F., Alaeddini, A., Turksen, I.: A hybrid fuzzy adaptive sampling—run rules for Shewhart control charts. Inf. Sci. 178(4), 1152–1170 (2008)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Statistics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.Department of StatisticsGovernment College UniversityFaisalabadPakistan

Personalised recommendations