Advertisement

International Journal of Fuzzy Systems

, Volume 21, Issue 3, pp 745–754 | Cite as

Robust Controller Design for Takagi–Sugeno Systems with Nonlinear Consequent Part and Time Delay

  • Hoda Moodi
  • Ali KazemyEmail author
Article
  • 25 Downloads

Abstract

This paper deals with the controller design problem for a class of delayed nonlinear systems by introducing a delayed Takagi–Sugeno system with nonlinear consequent parts. It is assumed that the fuzzy Takagi–Sugeno model contains disturbances or unstructured uncertainties. Depending on whether the system has input delay or not, two kinds of state-feedback controllers are supposed. By the help of Lyapunov–Krasovskii stability theory, some conditions in the form of linear matrix inequalities are presented such that the closed-loop system is asymptotically stable and achieves a prescribed \({\mathcal {H}}_\infty\) performance level. At the end, three examples are provided to illustrate the effectiveness of the proposed method.

Keywords

Nonlinear Takagi–Sugeno model Time-delay systems Lyapunov–Krasovskii theory Robust controller 

Notes

Acknowledgements

This research was supported by Quchan University of Technology under Grant Number 7740.

References

  1. 1.
    Bernal, M., Guerra, T.M.: Strategies to exploit non-quadratic local stability analysis. Int. J. Fuzzy Syst. 14(3), 372–379 (2012)MathSciNetGoogle Scholar
  2. 2.
    Cao, Y.Y., Frank, P.M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)CrossRefGoogle Scholar
  3. 3.
    Cao, Y.Y., Frank, P.M.: Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi–Sugeno fuzzy models. Fuzzy Sets Syst. 124, 213–229 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, B., Liu, X.: Delay-dependent robust \({H}_\infty\) control for T–S fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 13(4), 544–556 (2005)CrossRefGoogle Scholar
  5. 5.
    Dong, J., Wang, Y., Yang, G.H.: Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems. IEEE Trans. Syst. Man Cybern. B Cybern. 40(6), 1447–1459 (2010)CrossRefGoogle Scholar
  6. 6.
    Du, S., Qiao, J.: Stability analysis and \({L}_1\)-gain controller synthesis of switched positive T–S fuzzy systems with time-varying delays. Neurocomputing 275, 2616–2623 (2018)CrossRefGoogle Scholar
  7. 7.
    Gassara, H., Hajjaji, A.E., Chaabane, M.: Robust control of T–S fuzzy systems with time-varying delay using new approach. Int. J. Robust Nonlinear Control 20(14), 1566–1578 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gassara, H., Hajjaji, A.E., Chaabane, M.: Control of time delay polynomial fuzzy model subject to actuator saturation. Int. J. Fuzzy Syst. 18(5), 763–772 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gassara, H., Siala, F., Hajjaji, A.E., Chaabane, M.: Local stabilization of polynomial fuzzy model with time delay: SOS approach. Int. J. Control Autom. Syst. 15(1), 385–393 (2017)CrossRefzbMATHGoogle Scholar
  10. 10.
    Guerra, T.M., Kruszewski, A., Lauber, J.: Discrete Tagaki–Sugeno models for control: where are we? Annu. Rev. Control 33(1), 37–47 (2009)CrossRefGoogle Scholar
  11. 11.
    Hsian, F.H., Chen, C.W., Liang, Y.W., Xu, S.D., Chiang, W.L.: T–S fuzzy controllers for nonlinear interconnected systems with multiple time delays. IEEE Trans. Circuits Syst. 52(9), 1883–1893 (2005)CrossRefGoogle Scholar
  12. 12.
    Kazemy, A.: Global synchronization of neural networks with hybrid coupling: a delay interval segmentation approach. Neural Comput. Appl. 30(2), 627–637 (2018)CrossRefGoogle Scholar
  13. 13.
    Kwon, O.M., Park, M.J., Park, J.H., Lee, S.M.: Stability and stabilization of T–S fuzzy systems with time-varying delays via augmented Lyapunov–Krasovskii functionals. Inf. Sci. 372, 1–15 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Löfberg, J.: Yalmip: A toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan (2004)Google Scholar
  15. 15.
    Lee, H., Park, J.B., Joo, Y.H.: Robust control for uncertain Tagaki–Sugeno fuzzy systems with time-varying input delay. J. Dyn. Syst. Meas. Control 127(2), 302–306 (2005)CrossRefGoogle Scholar
  16. 16.
    Li, M., Shu, F., Liu, D., Zhong, S.: Robust \({H}_\infty\) control of T–S fuzzy systems with input time-varying delays: a delay partitioning method. Appl. Math. Comput. 321, 209–222 (2018)MathSciNetGoogle Scholar
  17. 17.
    Lien, C.H., Yu, K.W.: Robust control for Takagi–Sugeno fuzzy systems with time-varying state and input delays. Chaos Solitons Fractals 35(5), 1003–1008 (2008).  https://doi.org/10.1016/j.chaos.2006.06.007 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, J., Zhang, J., Zheng, Y., He, M.: Robust \({H}_\infty\) control for discrete-time T–S fuzzy systems with input delay. J. Control Theory Appl. 9(2), 189–194 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moodi, H., Farrokhi, M.: Robust observer-based controller design for Tagaki–Sugeno systems with nonlinear consequent parts. Fuzzy Sets Syst. 273(15), 141–154 (2015)CrossRefzbMATHGoogle Scholar
  20. 20.
    Peng, C., Tian, Y.C.: Delay-dependent robust \({H}_\infty\) control for uncertain systems with time-varying delays. Inf. Sci. 178(8), 3187–3197 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sala, A.: On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annu. Rev. Control 33(1), 48–58 (2009)CrossRefGoogle Scholar
  22. 22.
    Guerra, T.M.A.S., Tanaka, K.: Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 281, 168–182 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tan, J., Dian, S., Zhao, T., Chen, L.: Stability and stabilization of T–S fuzzy systems with time delay via Wirtinger-based double integral inequality. Neurocomputing 275, 1063–1071 (2018)CrossRefGoogle Scholar
  24. 24.
    Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009)CrossRefGoogle Scholar
  25. 25.
    Tsai, S., Chen, Y.A., Lo, J.C.: A novel stabilization condition for a class of TS fuzzy time-delay systems. Neurocomputing 175(A), 223–232 (2016)CrossRefGoogle Scholar
  26. 26.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)CrossRefGoogle Scholar
  27. 27.
    Verhaegen, M., Verdult, V.: Filtering and System Identification: A Least Squares Approach. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. 48(6), 1839–1848 (2018)CrossRefGoogle Scholar
  29. 29.
    Wang, F., Chen, B., Sun, Y., Lin, C.: Finite-time control of switched stochastic nonlinear systems. Fuzzy Sets Syst. (2018).  https://doi.org/10.1016/j.fss.2018.04.016 Google Scholar
  30. 30.
    Wei, Y., Qiu, J., Lam, H.K.: A novel approach to reliable output feedback control of fuzzy-affine systems with time delays and sensor faults. IEEE Trans. Fuzzy Syst. 25(6), 1808–1823 (2017)CrossRefGoogle Scholar
  31. 31.
    Zhang, B., Xu, S.: Delay-dependent robust \({H}_\infty\) control for uncertain discrete-time fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 17(4), 809–823 (2009)CrossRefGoogle Scholar
  32. 32.
    Zhang, F., Zhang, Q., Li, J.: Networked control for T–S fuzzy descriptor systems with network-induced delay and packet disordering. Neurocomputing 275, 2264–2278 (2018)CrossRefGoogle Scholar
  33. 33.
    Zhang, Z., Zhang, Z., Zhang, H., Shi, P., Karimi, H.R.: Finite-time \({H}_{\infty }\) filtering for T–S fuzzy discrete-time systems with time-varying delay and norm-bounded uncertainties. IEEE Trans. Fuzzy Syst. 23(6), 2427–2434 (2015)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringQuchan University of TechnologyQuchanIran
  2. 2.Department of Electrical EngineeringTafresh UniversityTafreshIran

Personalised recommendations