Skip to main content

On the Monotonicity Property of the TSK Fuzzy Inference System: The Necessity of the Sufficient Conditions and the Monotonicity Test

Abstract

The sufficient conditions for satisfying the monotonicity property of the Takagi–Sugeno–Kang (TSK) fuzzy inference system (FIS) have shown to be useful in many different applications. However, the related sufficient and necessary conditions are still unknown. As such, even when the sufficient conditions are violated, the TSK FIS model may still able to satisfy the monotonicity property. Therefore, the monotonicity test is used as an approximated method to determine the validness of the monotonicity property. To the best of our knowledge, the use of the monotonicity test in FIS is new. In this paper, we focus on single-input zero-order TSK FIS with Gaussian fuzzy membership functions. An algorithm to test the monotonicity property, either accepting or rejecting an TSK FIS model of being monotone, is devised and analyzed. The relationship between TSK FIS and its capability of satisfying the monotonicity property, along with the sufficient conditions and the outcome of the monotonicity test, is established through a Monte Carlo simulation. The Monte Carlo simulation is a useful necessity test for the sufficient conditions. We define a necessity measure of the sufficient conditions (NMSC) as the probability that a randomly generated monotone TSK FIS model (evaluated based on the monotonicity test algorithm) satisfies the sufficient conditions. We empirically show that the NMSC score reduces with increasing number of fuzzy rules. In addition, an application of the TSK FIS model to failure modes and effects analysis is demonstrated. As compared with the sufficient conditions, a better FIS-based model with a lower error measure can be obtained using the monotonicity test. The outcome indicates the effectiveness of the monotonicity test for designing low-dimensional TSK FIS models with large numbers of fuzzy rules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–813 (1992)

    Article  Google Scholar 

  2. 2.

    Wang, L.-X.: Fuzzy systems are universal approximators. In: Proceedings of IEEE International Conference on Fuzzy Systems (1992)

  3. 3.

    Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43(11), 1329–1333 (1994)

    Article  MATH  Google Scholar 

  4. 4.

    Ying, H.: A sufficient condition on a general class of interval type-2 Takagi-Sugeno fuzzy systems with linear rule consequent as universal approximators. J. Intell. Fuzzy Syst. 29(3), 1219–1227 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Er, M.J., Mandal, S.: A survey of adaptive fuzzy controllers: nonlinearities and classifications. IEEE Trans. Fuzzy Syst. 24(5), 1095–1107 (2016)

    Article  Google Scholar 

  6. 6.

    Seki, H., Ishii, H., Mizumoto, M.: On the monotonicity of fuzzy inference methods related to T–S inference method. IEEE Trans. Fuzzy Syst. 18(3), 629–634 (2010)

    Article  Google Scholar 

  7. 7.

    Kim, J., Lee, J.S.: Sufficient conditions for monotonically constrained functional-type SIRMs connected fuzzy systems. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1–6 (2010)

  8. 8.

    Van Broekhoven, E., De Baets, B.: Only smooth rule bases can generate monotone Mamdani-Assilian models under center-of-gravity defuzzification. IEEE Trans. Fuzzy Syst. 17(5), 1157–1174 (2009)

    Article  Google Scholar 

  9. 9.

    Won, J.M., Park, S.Y., Lee, J.S.: Parameter conditions for monotonic Takagi-Sugeno-Kang fuzzy system. Fuzzy Sets Syst. 132(2), 135–146 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Pang, L.M., Tay, K.M., Lim, C.P.: Monotone fuzzy rule relabeling for the zero-order TSK fuzzy inference system. IEEE Trans. Fuzzy Syst. 24(6), 1455–1463 (2016)

    Article  Google Scholar 

  11. 11.

    Li, C.D., Yi, J.Q., Zhang, G.Q.: On the monotonicity of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 22(5), 1197–1212 (2013)

    Article  Google Scholar 

  12. 12.

    Jee, T.L., Tay, K.M., Lim, C.P.: A new two-stage fuzzy inference system-based approach to prioritize failures in failure mode and effect analysis. IEEE Trans. Reliab. 64(3), 869–877 (2015)

    Article  Google Scholar 

  13. 13.

    Kouikoglou, V.S., Phillis, Y.A.: On the monotonicity of hierarchical sum-product fuzzy systems. Fuzzy Sets Syst. 160(24), 3530–3538 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Lindskog, P., Ljung, L.: Ensuring monotonic gain characteristics in estimated models by fuzzy model structures. Automatica 36(2), 311–317 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Kerk, Y.W., Tay, K.M., Lim, C.P.: An analytical interval fuzzy inference system for risk evaluation and prioritization in failure mode and effect analysis. IEEE Syst. J. 11(3), 1589–1600 (2017)

    Article  Google Scholar 

  16. 16.

    Husek, P.: On monotonicity of Takagi-Sugeno fuzzy systems with ellipsoidal regions. IEEE Trans. Fuzzy Syst. 24(6), 1673–1678 (2016)

    Article  Google Scholar 

  17. 17.

    Mandal, S., Jayaram, B.: Monotonicity of SISO fuzzy relational inference with an implicative rule base. IEEE Trans. Fuzzy Syst. 24(6), 1475–1487 (2016)

    Article  Google Scholar 

  18. 18.

    Won, J.M., Karray, F.: Towards necessity of parametric conditions for monotonic fuzzy systems. IEEE Trans. Fuzzy Syst. 22(2), 465–468 (2014)

    Article  Google Scholar 

  19. 19.

    Kim, J.W., Won, J.M., Koo, K.M., Lee, J.S.: Monotonic fuzzy systems as universal approximators for monotonic functions. Intell. Autom. Soft Comput. 18(1), 13–31 (2012)

    Article  Google Scholar 

  20. 20.

    Teh, C.Y., Tay, K.M., Lim, C.P.: Monotone data samples do not always produce monotone fuzzy if-then rules: learning with ad hoc and system identification methods. In: FUZZ-IEEE, pp. 1–7 (2017)

  21. 21.

    Tay, K.M., Lim, C.P.: On monotonic sufficient conditions of fuzzy inference systems and their applications. Int. J. Uncertain. Fuzz. 19(5), 731–757 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Tay, K.M., Lim, C.P., Teh, C.Y., Lau, S.H.: A monotonicity index for the monotone fuzzy modeling problem. In: FUZZ-IEEE, pp. 456–463 (2012)

  23. 23.

    Goldreich, O., Goldwasser, S., Lehman, E., Ron, D., Samorodnitsky, A.: Testing monotonicity. Combinatorial 20, 301–337 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Ergun, F., Kannan, S., Kumar, S. Ravi, Rubinfeld, R., Viswanathan, M.: Spot-checkers. In: Proceedings of STOC, pp. 259–268 (1988)

  25. 25.

    Fischer, E., Lehman, E., Newman, I., Raskhodnikova, S., Rubinfeld, R., Samorodnitsky, A.: Monotonicity testing over general post domains. In: Proceedings of STOC, pp. 474–483 (2002)

  26. 26.

    Dodis, Y., Goldreich, O., Lehman, E., Raskhodnikova, S., Ron, D., Samorodnitsky, A.: Improved testing algorithms for monotonicity. In: Proceedings of RANDOM, pp. 97–108 (1999)

  27. 27.

    Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Execution. American Society for Quality Control, Milwaukee (2003)

    Google Scholar 

  28. 28.

    Tay, K.M., Lim, C.P.: On the use of fuzzy inference techniques in assessment models: part II: industrial applications. Fuzzy Optim. Decis. Mak. 7(3), 283–302 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  30. 30.

    Daniels, H., Velikova, M.: Monotone and partially monotone neural network. IEEE Trans. Neural Netw. 21(6), 906–917 (2010)

    Article  Google Scholar 

  31. 31.

    Fishman, G.S.: Monte Carlo: Concept, Algorithms, and Applications. Springer, Berlin (2003)

    Google Scholar 

  32. 32.

    Tooranloo, H.S., Ayatollah, A.S.: Pathology the internet banking service quality using Failure Mode and Effect Analysis in interval-valued intuitionistic fuzzy environment. Int. J. Fuzzy Syst. 19(1), 109–123 (2017)

    Article  Google Scholar 

  33. 33.

    Hoffman, H.: Evolutionary algorithms for fuzzy control system design. Proc. IEEE 89(9), 1318–1333 (2001)

    Article  Google Scholar 

  34. 34.

    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neural-Fuzzy and Soft Computing. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  35. 35.

    Lin, C.T., George Lee, C.S.: Neural-Fuzzy Systems: A Neural-Fuzzy Synergirm to Intelligent Systems. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  36. 36.

    Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(3), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chin Ying Teh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teh, C.Y., Tay, K.M. & Lim, C.P. On the Monotonicity Property of the TSK Fuzzy Inference System: The Necessity of the Sufficient Conditions and the Monotonicity Test. Int. J. Fuzzy Syst. 20, 1915–1924 (2018). https://doi.org/10.1007/s40815-018-0509-0

Download citation

Keywords

  • Takagi–Sugeno–Kang fuzzy inference system
  • Monotonicity property
  • Monotonicity test
  • Sufficient conditions
  • Failure mode and effects analysis
  • Fuzzy occurrence model