Advertisement

Backstepping-Based Finite-Time Adaptive Fuzzy Control of Unknown Nonlinear Systems

  • Chia-Wen Chang
  • Chun-Fei Hsu
  • Tsu-Tian Lee
Article
  • 35 Downloads

Abstract

This paper proposes a backstepping-based finite-time adaptive fuzzy controller (BFAFC) for a nonlinear system in the present of unknown and uncertainty terms. A nonsingleton type-2 fuzzy system is presented to online approximate the unknown term in the nonlinear system, where the ellipsoidal type-2 membership functions are considered to deal with large amounts of uncertainties. Moreover, to further improve the control performance, the parameter adaptive laws are designed by the Lyapunov function and finite-time stability theorem in this paper such that not only the system stability but also the finite-time convergence can be guaranteed. Finally, the proposed BFAFC system is applied to an inverted pendulum and a coupled chaotic system to validate the effectiveness of the BFAFC system. Simulation results show that the proposed BFAFC system can cause the tracking error to converge to zero in a finite time and the tracking accuracy can be improved satisfactorily.

Keywords

Adaptive control Backstepping control Finite-time stability Ellipsoidal type-2 membership function 

Notes

Acknowledgements

The authors appreciate the partial financial support from the Ministry of Science and Technology of Republic of China under Grant MOST 105-2628-E-032-001-MY3.

References

  1. 1.
    Saghafinia, A., Hew, W.P., Uddin, M.N., Gaeid, K.S.: Adaptive fuzzy sliding-mode control into chattering-free IM drive. IEEE Trans. Ind. Appl. 51(1), 692–701 (2015)CrossRefGoogle Scholar
  2. 2.
    Tong, S.C., Zhang, L.L., Li, Y.M.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37–47 (2016)CrossRefGoogle Scholar
  3. 3.
    Hsu, C.F., Chang, C.W.: Intelligent dynamic sliding-mode neural control using recurrent perturbation fuzzy neural networks. Neurocomputing 173(3), 734–743 (2016)CrossRefGoogle Scholar
  4. 4.
    Yang, L., Li, J.: Adaptive fuzzy sliding mode control for nano-positioning of piezoelectric actuators. Int. J. Fuzzy Syst. 19(1), 238–246 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wu, T.S., Karkoub, M., Wang, H., Chen, H.S., Chen, T.H.: Robust tracking control of MIMO underactuated nonlinear systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control. IEEE Trans. Fuzzy Syst. 25(4), 905–918 (2017)CrossRefGoogle Scholar
  6. 6.
    Wang, L., Li, H., Zhou, Q., Lu, R.: Adaptive fuzzy control for nonstrict feedback systems with unmodeled dynamics and fuzzy dead zone via output feedback. IEEE Trans. Cybern. 47(9), 2400–2412 (2017)CrossRefGoogle Scholar
  7. 7.
    Juang, C.F., Chen, C.Y.: An interval type-2 neural fuzzy chip with on-chip incremental learning ability for time-varying data sequence prediction and system control. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 216–228 (2014)CrossRefGoogle Scholar
  8. 8.
    Kayacan, E., Kayacan, E., Khanesar, M.A.: Identification of nonlinear dynamic systems using type-2 fuzzy neural networks-a novel learning algorithm and a comparative study. IEEE Trans. Ind. Electron. 62(3), 1716–1724 (2015)CrossRefMATHGoogle Scholar
  9. 9.
    Lu, X.G., Liu, M., Liu, J.X.: Design and optimization of interval type-2 fuzzy logic controller for delta parallel robot trajectory control. Int. J. Fuzzy Syst. 19(1), 190–206 (2017)CrossRefGoogle Scholar
  10. 10.
    Bibi, Y., Bouhali, O., Bouktir, T.: Petri type 2 fuzzy neural networks approximator for adaptive control of uncertain non-linear systems. IET Control Theory Appl. 11(17), 3130–3136 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nie, M., Tan, W.W.: Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: 2008 IEEE International Conference on Fuzzy Systems, pp. 1425–1432 (2008)Google Scholar
  12. 12.
    Khanesar, M.A., Kayacan, E., Teshnehlab, M., Kaynak, O.: Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function. IEEE Trans. Syst. Man Cybern. 41(5), 1395–1406 (2011)CrossRefGoogle Scholar
  13. 13.
    Mohammadzadeh, A., Ghaemi, S., Kaynak, O., Khanmohammadi, S.: Robust H -based synchronization of the fractional-order chaotic systems by using new self-evolving nonsingleton type-2 fuzzy neural networks. IEEE Trans. Fuzzy Syst. 24(6), 1544–1554 (2016)CrossRefGoogle Scholar
  14. 14.
    Ting, C.S., Chang, Y.N., Shi, B.W., Lieu, J.F.: Adaptive backstepping control for permanent magnet linear synchronous motor servo drive. IET Electr. Power Appl. 9(3), 265–279 (2015)CrossRefGoogle Scholar
  15. 15.
    Huang, H.C., Chiang, C.H.: Backstepping holonomic tracking control of wheeled robots using an evolutionary fuzzy system with qualified ant colony optimization. Int. J. Fuzzy Syst. 18(1), 28–40 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fei, J., Chu, Y., Hou, S.: A backstepping neural global sliding mode control using fuzzy approximator for three-phase active power filter. IEEE Access 5, 16021–16032 (2017)CrossRefGoogle Scholar
  17. 17.
    Sun, L., Huo, W., Jiao, Z.: Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint. IEEE Trans. Ind. Electron. 64(1), 480–492 (2017)CrossRefGoogle Scholar
  18. 18.
    Hong, Y., Huang, J., Xu, Y.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zhu, Z., Xia, Y.Q., Fu, M.Y.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wu, J., Chen, W.S., Li, J.: Global finite-time adaptive stabilization for nonlinear systems with multiple unknown control directions. Automatica 69(1), 298–307 (2016)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wang, N., Qian, C., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)CrossRefGoogle Scholar
  22. 22.
    Huang, J., Wen, C., Wang, W., Song, Y.D.: Design of adaptive finite time controllers for nonlinear uncertain systems based on given transient specifications. Automatica 69(7), 395–404 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Cai, M., Xiang, Z.: Adaptive practical finite-time stabilization for uncertain nonstrict feedback nonlinear systems with input nonlinearity. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1668–1678 (2017)CrossRefGoogle Scholar
  24. 24.
    Liu, H., Zhang, T.: Adaptive neural network finite-time control for uncertain robotic manipulators. J. Intell. Robot. Syst. 75(3), 363–377 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, H., Chen, B., Lin, C., Sun, Y., Wang, F.: Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation. IET Control Theory Appl. 11(5), 677–684 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. (2017).  https://doi.org/10.1109/TCYB.2017.2715980 Google Scholar
  27. 27.
    Lv, W., Wang, F.: Finite-time adaptive fuzzy tracking control for a class of nonlinear systems with unknown hysteresis. Int. J. Fuzzy Syst. (2017).  https://doi.org/10.1007/s40815-017-0381-3 Google Scholar
  28. 28.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)MATHGoogle Scholar
  29. 29.
    Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hsu, C.F., Lee, T.T.: Emotional fuzzy sliding-mode control for unknown nonlinear systems. Int. J. Fuzzy Syst. 19(3), 942–953 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chen, Y.Q., Wang, J., Chan, W.L., Tsang, K.M.: Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control. Nonlinear Dyn. 61(4), 847–857 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Hsu, C.F.: Hermite-neural-network-based adaptive control for a coupled nonlinear chaotic system. Neural Comput. Appl. 22(1), 421–433 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information and Telecommunications EngineeringMing Chuan UniversityTaipeiTaiwan
  2. 2.Department of Electrical EngineeringTamkang UniversityNew Taipei CityTaiwan

Personalised recommendations