A Bibliometric Overview and Visualization of the International Journal of Fuzzy Systems Between 2007 and 2017

Article
  • 40 Downloads

Abstract

The International Journal of Fuzzy Systems (IJFS) is an influential journal in the field of fuzzy systems. In this paper, a bibliometric overview of the IJFS publications downloaded from the Web of Science is provided. The purpose of this paper is to identify the conceptual evolution and the development situation of the journal. To do this, first the annual trends of publications and citations, sources that citing IJFS papers and the most highly cited papers in IJFS are presented. Then, the influential countries, institutes and authors are discussed in details. Next, keywords of IJFS including author keywords and global keywords are analyzed. Furthermore, the co-authorship status of IJFS publications is investigated. Finally, the co-citation analyses including the document co-citation, the author co-citation and the institute co-citation are offered.

Keywords

Bibliometrics Citations Keywords Co-authorship Co-citation 

Notes

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China (Nos. 71771156 and 71501135) and the Scientific Research Foundation for Excellent Young Scholars at Sichuan University (No. 2016SCU04A23).

References

  1. 1.
    Merigó, J.M., Cancino, C.A., Coronado, F., Urbano, D.: Academic research in innovation: a country analysis. Scientometrics 108(2), 559–593 (2016)CrossRefGoogle Scholar
  2. 2.
    Claude, R., Charles-Daniel, A., Jean, A., Jean-Francois, G.: Bibliometric overview of the utilization of artificial neural networks in medicine and biology. Scientometrics 59(1), 117–130 (2004)CrossRefGoogle Scholar
  3. 3.
    Železnik, D., Vošner, H.B., Kokol, P.: A bibliometric analysis of the Journal of Advanced Nursing, 1976–2015. J. Adv. Nurs. 73(10), 2407–2419 (2017)CrossRefGoogle Scholar
  4. 4.
    Osareh, F.: Bibliometrics, citation analysis and co-citation analysis: a review of literature I. Library 46(3), 149–158 (1996)Google Scholar
  5. 5.
    Chen, G., Xiao, L.: Selecting publication keywords for domain analysis in bibliometrics: a comparison of three methods. J. Informetr. 10(1), 212–223 (2016)CrossRefGoogle Scholar
  6. 6.
    Prozesky, H., Boshoff, N.: Bibliometrics as a tool for measuring gender-specific research performance: an example from South African invasion ecology. Scientometrics 90(2), 383–406 (2012)CrossRefGoogle Scholar
  7. 7.
    Leung, X.Y., Sun, J., Bai, B.: Bibliometrics of social media research: a co-citation and co-word analysis. Int. J. Hosp. Manag. 66, 35–45 (2017)CrossRefGoogle Scholar
  8. 8.
    Petersohn, S.: Professional competencies and jurisdictional claims in evaluative bibliometrics: the educational mandate of academic librarians. Educ. Inf. 32(2), 165–193 (2016)Google Scholar
  9. 9.
    Noyons, E.C.M., Moed, H.F., Luwel, M.: Combining mapping and citation analysis for evaluative bibliometric purposes: a bibliometric study. J. Assoc. Inf. Sci. Technol. 50(2), 115–131 (1999)Google Scholar
  10. 10.
    Van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010)CrossRefGoogle Scholar
  11. 11.
    Liao, H.C., Tang, M., Luo, L., Li, C.Y., Chiclana, F., Zeng, X.J.: A bibliometric analysis and visualization of medical big data research. Sustainability 10(1), 1–18 (2018)Google Scholar
  12. 12.
    Zhang, P., Yan, F.W., Du, C.Q.: A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics. Renew. Sustain. Energy Rev. 48, 88–104 (2015)CrossRefGoogle Scholar
  13. 13.
    Garousi, V.: A bibliometric analysis of the Turkish software engineering research community. Scientometrics 105(1), 23–49 (2015)CrossRefGoogle Scholar
  14. 14.
    Yu, D.J., Liao, H.C.: Visualization and quantitative research on intuitionistic fuzzy studies. J. Intell. Fuzzy Syst. 30(6), 3653–3663 (2016)CrossRefGoogle Scholar
  15. 15.
    Liu, W.S., Liao, H.C.: A bibliometric analysis of fuzzy decision research during 1970–2015. Int. J. Fuzzy Syst. 19(1), 1–14 (2017)CrossRefGoogle Scholar
  16. 16.
    Liao, H.C., Xu, Z.S., Herrera-Viedma, E., Herrera, F.: Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the art survey. Int.J. Fuzzy Syst. (2017).  https://doi.org/10.1007/s40815-017-0432-9 Google Scholar
  17. 17.
    Merigó, J.M., Blanco-Mesa, F., Gil-Lafuente, A.M., Yager, R.R.: Thirty years of the International Journal of Intelligent Systems: a bibliometric review. Int. J. Intell. Syst. 32(5), 526–554 (2017)CrossRefGoogle Scholar
  18. 18.
    Cancino, C., Merigó, J.M., Coronado, F., Dessouky, Y., Dessouky, M.: Forty years of Computers & Industrial Engineering: a bibliometric analysis. Comput. Ind. Eng. 113, 614–629 (2017)CrossRefGoogle Scholar
  19. 19.
    Cobo, M.J., Martínez, M.A., Gutiérrez-Salcedo, M., Fujita, H., Herrera-Viedma, E.: 25 years at knowledge-based systems: a bibliometric analysis. Knowl.-Based Syst. 80, 3–13 (2015)CrossRefGoogle Scholar
  20. 20.
    Yu, D.J., Xu, Z.S., Pedrycz, W., Wang, W.R.: Information Sciences 1968–2016: a retrospective analysis with text mining and bibliometric. Inf. Sci. 418–419, 619–634 (2017)CrossRefGoogle Scholar
  21. 21.
    Merigó, J.M., Pedrycz, W., Weber, R., de la Sotta, C.: Fifty years of information sciences: a bibliometric overview. Inf. Sci. 432, 245–268 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Merigó, J.M., Mas-Tur, A., Roig-Tierno, N., Ribeiro-Soriano, D.: A bibliometric overview of the Journal of Business Research between 1973 and 2014. J. Bus. Res. 68(12), 2645–2653 (2015)CrossRefGoogle Scholar
  23. 23.
    Xu, Z.S., Yu, D.J., Kao, Y.H., Lin, C.T.: The structure and citation landscape of IEEE Transactions on Fuzzy Systems (1994–2015). IEEE Trans. Fuzzy Syst. (2017).  https://doi.org/10.1109/tfuzz.2017.2672732 Google Scholar
  24. 24.
    Laengle, S., Merigó, J.M., Miranda, J., Słowinski, R., Bomze, I., Borgonovo, E., Dyson, R.G., Oliveira, J.F., Teunter, R.: Forty years of the European Journal of Operational Research: a bibliometric overview. Eur. J. Oper. Res. 262, 803–816 (2017)CrossRefMATHGoogle Scholar
  25. 25.
    Díaz, I., Cortey, M., Olvera, À., Segalés, J.: Use of H-index and other bibliometric indicators to evaluate research productivity outcome on swine diseases. PLoS ONE 11(3), e0149690 (2016)CrossRefGoogle Scholar
  26. 26.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. U.S.A. 102(46), 16569–16572 (2005)CrossRefMATHGoogle Scholar
  27. 27.
    Merigó, J.M., Casanovas, M.: Fuzzy generalized hybrid aggregation operators and its application in fuzzy decision making. Int. J. Fuzzy Syst. 12(1), 15–24 (2010)Google Scholar
  28. 28.
    Merigó, J.M., Casanovas, M.: Decision making with distance measures and linguistic aggregation operators. Int. J. Fuzzy Syst. 12(3), 190–198 (2011)Google Scholar
  29. 29.
    Wei, G.W.: Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. Int. J. Fuzzy Syst. 17(3), 484–489 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hsu, C.Y., Chen, K.T., Tzeng, G.H.: FMCDM with fuzzy DEMATEL approach for customers’ choice behavior model. Int. J. Fuzzy Syst. 9(4), 236–246 (2007)MathSciNetGoogle Scholar
  31. 31.
    Xu, W.H., Wang, Q.R., Zhang, X.T.: Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space. Int. J. Fuzzy Syst. 13(4), 246–259 (2011)MathSciNetGoogle Scholar
  32. 32.
    Wang, X.F.: Fuzzy number intuitionistic fuzzy arithmetic aggregation operators. Int. J. Fuzzy Syst. 10(2), 104–111 (2008)MathSciNetGoogle Scholar
  33. 33.
    Merigó, J.M.: Fuzzy multi-person decision making with fuzzy probabilistic aggregation operators. Int. J. Fuzzy Syst. 13(3), 163–174 (2011)MathSciNetGoogle Scholar
  34. 34.
    Nehi, H.M.: A new ranking method for intuitionistic fuzzy numbers. Int. J. Fuzzy Syst. 12(1), 80–86 (2010)MathSciNetGoogle Scholar
  35. 35.
    Liu, P.D., Chu, Y.C., Li, Y.W., Chen, Y.B.: Some generalized neutrosophic number hamacher aggregation operators and their application to group decision making. Int. J. Fuzzy Syst. 16(2), 242–255 (2014)Google Scholar
  36. 36.
    Yin, Y.Q., Huang, X.K., Xu, D.H., Li, F.: The characterization of h-semisimple hemirings. Int. J. Fuzzy Syst. 11(2), 116–122 (2009)MathSciNetGoogle Scholar
  37. 37.
    Peng, C., Wen, L.Y., Yang, J.Q.: On delay-dependent robust stability criteria for uncertain T–S fuzzy systems with interval time-varying delay. Int. J. Fuzzy Syst. 13(1), 35–44 (2011)MathSciNetGoogle Scholar
  38. 38.
    Wei, G.W., Alsaadi, F.E., Hayat, T., Alsaedi, A.: A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. Int. J. Fuzzy Syst. 19(3), 607–614 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Chen, X.W., Dai, W.: Maximum entropy principle for uncertain variables. Int. J. Fuzzy Syst. 13(3), 232–236 (2011)MathSciNetGoogle Scholar
  40. 40.
    Yang, F.S., Zhang, H.G.: T–S model-based relaxed reliable stabilization of networked control systems with time-varying delays under variable sampling. Int. J. Fuzzy Syst. 13(4), 260–269 (2011)MathSciNetGoogle Scholar
  41. 41.
    Wang, X.Y., Chien, Y.H., Li, I.H.: An on-line robust and adaptive T–S fuzzy-neural controller for more general unknown systems. Int. J. Fuzzy Syst. 10(1), 33–43 (2008)MathSciNetGoogle Scholar
  42. 42.
    Ye, J.: Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making. Int. J. Fuzzy Syst. 16(2), 204–211 (2014)Google Scholar
  43. 43.
    Du, B., Zhang, L.P., Zhang, L.F., Chen, T., Wu, K.: A discriminative manifold learning based dimension reduction method for hyperspectral classification. Int. J. Fuzzy Syst. 14(2), 272–277 (2012)Google Scholar
  44. 44.
    Zhang, X., Liu, P.D.: Method for multiple attribute decision-making under risk with interval numbers. Int. J. Fuzzy Syst. 12(3), 237–242 (2010)Google Scholar
  45. 45.
    Huang, X.X.: An entropy method for diversified fuzzy portfolio selection. Int. J. Fuzzy Syst. 14(1), 160–165 (2012)MathSciNetGoogle Scholar
  46. 46.
    Qu, Y.P., Shang, C.J., Wu, W., Shen, Q.: Evolutionary fuzzy extreme learning machine for mammographic risk analysis. Int. J. Fuzzy Syst. 13(4), 282–291 (2011)MathSciNetGoogle Scholar
  47. 47.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefMATHGoogle Scholar
  48. 48.
    Merigó, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 27, 420–433 (2015)CrossRefGoogle Scholar
  49. 49.
    Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F.: An approach for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the fuzzy sets theory field. J. Informetr. 5(1), 146–166 (2011)CrossRefMATHGoogle Scholar
  50. 50.
    Garfield, E.: Keywords plus-ISI’s breakthrough retrieval method. Part 1. Expanding your searching power on Current Contents on Diskette. Curr. Contents 32, 5–9 (1990)Google Scholar
  51. 51.
    Xie, S.D., Ho, Y.H.: A bibliometric analysis of world volatile organic compounds research trends. Scientometrics 83(2), 477–492 (2010)CrossRefGoogle Scholar
  52. 52.
    Zhang, L., Wang, M.H., Ho, Y.S.: A review of published wetland research, 1991–2008: ecological engineering and ecosystem restoration. Ecol. Eng. 36(8), 973–980 (2010)CrossRefGoogle Scholar
  53. 53.
    Chuang, K.Y., Huang, Y.L., Ho, Y.S.: A bibliometric and citation analysis of stroke-related research in Taiwan. Scientometrics 72(2), 201–212 (2007)CrossRefGoogle Scholar
  54. 54.
    Li, H.J., An, H.Z., Yue, Y., Huang, J.C.: Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: based on two-mode affiliation network. Phys. A 450, 657–669 (2016)CrossRefGoogle Scholar
  55. 55.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Reyes-Gonzalez, L., Gonzalez-Brambila, C.N., Veloso, F.: Using co-authorship and citation analysis to identify research groups: a new way to assess performance. Scientometrics 108(3), 1171–1191 (2016)CrossRefGoogle Scholar
  57. 57.
    Wagner, C.S., Leydesdorff, L.: Network structure, self-organization, and the growth of international collaboration in science. Res. Policy 34(10), 1608–1618 (2005)CrossRefGoogle Scholar
  58. 58.
    Gauffriau, M., Larsen, P.O., Maye, I., Roulin-Perriard, A., von Ins, M.: Publication, cooperation and productivity measures in scientific research. Scientometrics 73(2), 175–214 (2007)CrossRefGoogle Scholar
  59. 59.
    Acedo, F.J., Barroso, C., Casanueva, C., Galan, J.L.: Co-authorship in management and organizational studies: an empirical and network analysis. J. Manag. Stud. 43(5), 957–983 (2006)CrossRefGoogle Scholar
  60. 60.
    Leydesdorff, L., Wagner, C.S.: International collaboration in science and the formation of a core group. J. Informetr. 2(4), 317–325 (2008)CrossRefGoogle Scholar
  61. 61.
    Persson, O., Glanzel, W., Danell, R.: Inflationary bibliometrics values: the role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics 60(3), 421–432 (2004)CrossRefGoogle Scholar
  62. 62.
    Small, H.: Co-citation in scientific literature—new measure of relationship between 2 documents. J. Am. Soc. Inf. Sci. 24(4), 265–269 (1973)CrossRefGoogle Scholar
  63. 63.
    White, H.D., McCain, K.W.: Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. J. Am. Soc. Inf. Sci. 49(4), 327–355 (1998)Google Scholar
  64. 64.
    Boyack, K.W., Klavans, R., Borner, K.: Mapping the backbone of science. Scientometrics 64(3), 351–374 (2005)CrossRefGoogle Scholar
  65. 65.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)CrossRefMATHGoogle Scholar
  67. 67.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)CrossRefMATHGoogle Scholar
  68. 68.
    Tanaka, K., Hori, T., Wang, H.O.: A fuzzy Lyapunov approach to fuzzy control system design. In: Proceeding of the 2001 American Control Conference, Arlington, pp. 4790–4795 (2001)Google Scholar
  69. 69.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  70. 70.
    Lin, C.T., Lee, C.S.G.: Neural-network-based fuzzy logic control and decision systems. IEEE Trans. Comput. 40(12), 1320–1336 (1991)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy-systems. Fuzzy Sets Syst. 31(3), 343–349 (1989)CrossRefMATHGoogle Scholar
  72. 72.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision-making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)CrossRefMATHGoogle Scholar
  73. 73.
    Dubois, D., Prade, H.: Systems of linear fuzzy constraints. Fuzzy Sets Syst. 3(1), 37–48 (1980)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Business SchoolSichuan UniversityChengduChina
  2. 2.Department of Electrical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations