Function-Link Fuzzy Cerebellar Model Articulation Controller Design for Nonlinear Chaotic Systems Using TOPSIS Multiple Attribute Decision-Making Method

Article

Abstract

This paper aims to propose a more efficient control algorithm to select suitable firing nodes, improve the computational efficiency, reduce the number of firing rules and achieve good performance for nonlinear chaotic systems. A novel function-link fuzzy cerebellar model articulation controller (FLFCMAC) is designed by using a multiple attribute decision-making method named as technique for order of preference by similarity to ideal solution (TOPSIS). The TOPSIS is used to determine the optimal threshold values for receptive-field basis function in association memory space such that the firing fuzzy rules can be effectively reduced. In the TOPSIS design, the Shannon entropy index is used to derive the objective weights of the evaluation attribute. The proposed control system is composed of a TOPSIS-based FLCMAC (TFLFCMAC) and a fuzzy compensator. The TFLFCMAC is the main tracking controller employed to mimic an ideal controller, and the fuzzy compensator can eliminate the approximation error between the TFLFCMAC and the ideal controller. The parameters of the proposed TFLFCMAC are tuned online using the adaptation laws that are derived from a Lyapunov stability theorem, so that the system’s stability is guaranteed. Finally, the proposed control system is applied to a Duffing–Holmes chaotic system and a gyro chaotic system to illustrate its favorable control performance and to show its superiority to the other control techniques.

Keywords

Technique for order of preference by similarity to ideal solution (TOPSIS) Entropy Fuzzy inference system Function-link (FL) Cerebellar model articulation controller (CMAC) Nonlinear chaotic system 

Notes

Acknowledgements

This paper was supported in part by the National Science Council of the Republic of China under Grand NSC 101-2221-E-155-026-MY3.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Aghababa, M.P., Heydari, A.: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities. Appl. Math. Model. 36(4), 1639–1652 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Yau, H.-T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos Solitons Fractals 22(2), 341–347 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Qian, W., Qiang, Z., Xiaopeng, W.: Image encryption algorithm based on DNA biological properties and chaotic systems. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications, pp. 132–136 (2010)Google Scholar
  4. 4.
    Roopaei, M., Sahraei, B.R., Lin, T.-C.: Adaptive sliding mode control in a novel class of chaotic systems. Commun. Nonlin. Sci. Numer. Simul. 15(12), 4158–4170 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Wu, Y., Meng, X., Xie, L., Lu, R., Su, H., Wu, Z.-G.: An input-based triggering approach to leader-following problems. Automatica 75, 221–228 (2017)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Vaidyanathan, S.: Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur. Phys. J. Spec. Top. 223(8), 1519–1529 (2014)CrossRefGoogle Scholar
  7. 7.
    Rasappan, S., Vaidyanathan, S.: Global chaos synchronization of WINDMI and coullet chaotic systems using adaptive backstepping control design. Kyungpook Math. J. 54(2), 293–320 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Vaidyanathan, S., Sampath, S.: Anti-synchronization of four-wing chaotic systems via sliding mode control. Int. J. Autom. Comput. 9(3), 274–279 (2012)CrossRefGoogle Scholar
  9. 9.
    Köse, E.: Controller design by using non-linear control methods for satellite chaotic system. Electr. Eng. 99(2), 763–773 (2017)CrossRefGoogle Scholar
  10. 10.
    Dasgupta, T., Paral, P., Bhattacharya, S.: Fractional order sliding mode control based chaos synchronization and secure communication. In: 2015 International Conference on Computer Communication and Informatics, pp. 1–6 (2015)Google Scholar
  11. 11.
    Vaidyanathan, S., Azar, A.T.: Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidyanathan chaotic systems. In: Advances and Applications in Sliding Mode Control Systems, pp. 549–569. Springer (2015)Google Scholar
  12. 12.
    Wang, Y., Zhu, Y., Karimi, H.R., Li, X.: Sampled-data exponential synchronization of chaotic Lur’e systems. IEEE Access 5, 17834–17840 (2017)CrossRefGoogle Scholar
  13. 13.
    Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.-G.: Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica 76, 183–192 (2017)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chang, W.-D., Yan, J.-J.: Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems. Chaos Solitons Fractals 26(1), 167–175 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Volos, C.K., Prousalis, D., Vaidyanathan, S., Pham, V.-T., Munoz-Pacheco, J., Tlelo-Cuautle, E.: Kinematic control of a robot by using a non-autonomous chaotic system. In: Advances and Applications in Nonlinear Control Systems, pp. 1–17. Springer (2016)Google Scholar
  16. 16.
    Lin, C.M., Peng, Y.F., Hsu, C.F.: Robust cerebellar model articulation controller design for unknown nonlinear systems. IEEE Trans. Circuits Syst. II Express Briefs 51(7), 354–358 (2004)CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Ma, X.-K., Liu, W.-Z.: Synchronization of chaotic systems with parametric uncertainty using active sliding mode control. Chaos Solitons Fractals 21(5), 1249–1257 (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Yu, Y., Zhang, S.: Adaptive backstepping synchronization of uncertain chaotic system. Chaos Solitons Fractals 21(3), 643–649 (2004)CrossRefMATHGoogle Scholar
  19. 19.
    Hsu, C.F., Lin, C.M., Lee, T.T.: Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans. Neural Netw. 17(5), 1175–1183 (2006)CrossRefGoogle Scholar
  20. 20.
    Yassen, M.T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design. Phys. Lett. A 360(4–5), 582–587 (2007)CrossRefMATHGoogle Scholar
  21. 21.
    Wei, Y., Qiu, J., Karimi, H.R.: Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults. IEEE Trans. Circuits Syst. I Regul. Pap. 64(1), 170–181 (2017)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Shen, H., Karimi, H.R., Duan, D.: Dissipativity-based fuzzy integral sliding mode control of continuous-time TS fuzzy systems. IEEE Trans. Fuzzy Syst. (2017).  https://doi.org/10.1109/TFUZZ.2017.2710952 Google Scholar
  23. 23.
    Chang, W.-J., Hsu, F.-L., Ku, C.-C.: Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via TS fuzzy model with bilinear consequent part. Int. J. Control Autom. Syst. 15(4), 1901–1915 (2017)CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Xia, Y., Shen, H., Zhou, P.: SMC design for robust stabilization of nonlinear Markovian jump singular systems. IEEE Trans. Autom. Control 63(1), 219–224 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wei, Y., Qiu, J., Lam, H.-K., Wu, L.: Approaches to T-S fuzzy-affine-model-based reliable output feedback control for nonlinear Ito stochastic systems. IEEE Trans. Fuzzy Syst. 25(3), 569–583 (2017)CrossRefGoogle Scholar
  26. 26.
    Akbarzadeh-T, M.-R., Hosseini, S., Naghibi-Sistani, M.-B.: Stable indirect adaptive interval type-2 fuzzy sliding-based control and synchronization of two different chaotic systems. Appl. Soft Comput. 55, 576–587 (2017)CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Gao, Y., Karimi, H.R., Shen, H., Fang, Z.: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2720968 Google Scholar
  28. 28.
    Wei, Y., Qiu, J., Shi, P., Lam, H.-K.: A new design of H-infinity piecewise filtering for discrete-time nonlinear time-varying delay systems via TS fuzzy affine models. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2034–2047 (2017)CrossRefGoogle Scholar
  29. 29.
    Saxena, A., Tandon, A., Saxena, A., Rana, K., Kumar, V.: On the terminal full order sliding mode control of uncertain chaotic systems. In: Fractional Order Control and Synchronization of Chaotic Systems, pp. 387–430. Springer (2017)Google Scholar
  30. 30.
    Bigdeli, N., Ziazi, H.A.: Design of fractional robust adaptive intelligent controller for uncertain fractional-order chaotic systems based on active control technique. Nonlinear Dyn. 87(3), 1703–1719 (2017)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Li, H.-Y., Lin, C.-M., Lee, C.-H., Juang, J.-G.: Adaptive function-link fuzzy CMAC control system design for MIMO nonlinear chaotic systems. Int. J. Fuzzy Syst. 16(4), 577–590 (2014)MathSciNetGoogle Scholar
  32. 32.
    Zhao, D., Shen, D., Wang, Y.: Fault diagnosis and compensation for two-dimensional discrete time systems with sensor faults and time-varying delays. Int. J. Robust Nonlin. Control (2017).  https://doi.org/10.1002/rnc.3742 MathSciNetMATHGoogle Scholar
  33. 33.
    Lee, Y., Lee, S.-H., Chung, C.C.: LPV H∞ control with disturbance estimation for permanent magnet synchronous motors. IEEE Trans. Industr. Electron. 65(1), 488–497 (2018)CrossRefGoogle Scholar
  34. 34.
    Lin, C.-M., Le, T.-L.: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1362–1374 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lin, C.-M., Le, T.-L., Huynh, T.-T.: Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275, 2239–2250 (2018)CrossRefGoogle Scholar
  36. 36.
    Wang, E., Alp, N., Shi, J., Wang, C., Zhang, X., Chen, H.: Multi-criteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting. Energy 125, 197–210 (2017)CrossRefGoogle Scholar
  37. 37.
    Mousavi-Nasab, S.H., Sotoudeh-Anvari, A.: A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater. Des. 121, 237–253 (2017)CrossRefGoogle Scholar
  38. 38.
    Si, J., Marjanovic-Halburd, L., Nasiri, F., Bell, S.: Assessment of building-integrated green technologies: a review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustain. Cities Soc. 27, 106–115 (2016)CrossRefGoogle Scholar
  39. 39.
    Keshavarz Ghorabaee, M.: Developing an MCDM method for robot selection with interval type-2 fuzzy sets. Robot. Comput. Integr. Manuf. 37, 221–232 (2016)CrossRefGoogle Scholar
  40. 40.
    Rudnik, K., Kacprzak, D.: Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system. Appl. Soft Comput. 52, 1020–1041 (2017)CrossRefGoogle Scholar
  41. 41.
    Hwang, C.L., Yoon, K.: Multiple attribute decision making: methods and applications: a state-of-the-art survey. Springer, New York (1981)CrossRefMATHGoogle Scholar
  42. 42.
    Kuo, T.: A modified TOPSIS with a different ranking index. Eur. J. Oper. Res. 260(1), 152–160 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Gupta, H., Barua, M.K.: Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. J. Clean. Prod. 152, 242–258 (2017)CrossRefGoogle Scholar
  44. 44.
    Zhou, H., Wang, J.-Q., Zhang, H.-Y.: Grey stochastic multi-criteria decision-making based on regret theory and TOPSIS. Int. J. Mach. Learn. Cybernet. 8(2), 651–664 (2017)CrossRefGoogle Scholar
  45. 45.
    Rao, R.V.: Multiple attribute decision making in the manufacturing environment. Springer, London (2013)CrossRefGoogle Scholar
  46. 46.
    Albus, J.S.: A new approach to manipulator control: The cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Contr. 97(3), 220–227 (1975)CrossRefMATHGoogle Scholar
  47. 47.
    Lin, C.-M., Peng, Y.-F.: Adaptive CMAC-based supervisory control for uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(2), 1248–1260 (2004)CrossRefGoogle Scholar
  48. 48.
    Lin, C.-M., Li, H.-Y.: Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Trans. Fuzzy Syst. 22(4), 791–802 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Lin, C.M., Chen, T.Y.: Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Trans. Neural Netw. 20(9), 1377–1384 (2009)CrossRefGoogle Scholar
  50. 50.
    Lin, C.-M., Li, H.-Y.: Self-organizing adaptive wavelet CMAC backstepping control system design for nonlinear chaotic systems. Nonlin. Anal. Real World Appl. 14(1), 206–223 (2013)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Lin, C.M., Li, H.Y.: Dynamic petri fuzzy cerebellar model articulation controller design for a magnetic levitation system and a two-axis linear piezoelectric ceramic motor drive system. IEEE Trans. Control Syst. Technol. 23(2), 693–699 (2015)CrossRefGoogle Scholar
  52. 52.
    Macnab, C.: Creating a CMAC with overlapping basis functions in order to prevent weight drift. Soft. Comput. 21(16), 4593–4600 (2017)CrossRefMATHGoogle Scholar
  53. 53.
    Lin, F.J., Teng, L.T., Lin, J.W., Chen, S.Y.: Recurrent functional-link-based fuzzy-neural-network-controlled induction-generator system using improved particle swarm optimization. IEEE Trans. Industr. Electron. 56(5), 1557–1577 (2009)CrossRefGoogle Scholar
  54. 54.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982)MATHGoogle Scholar
  56. 56.
    Lin, C.M., Li, H.Y.: TSK fuzzy CMAC-based robust adaptive backstepping control for uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 20(6), 1147–1154 (2012)CrossRefGoogle Scholar
  57. 57.
    Wang, L.-X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall Inc., Upper Saddle (1994)Google Scholar
  58. 58.
    Wai, R.-J.: Fuzzy sliding-mode control using adaptive tuning technique. IEEE Trans. Industr. Electron. 54(1), 586–594 (2007)CrossRefGoogle Scholar
  59. 59.
    Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall Englewood Cliffs, NJ (1991)MATHGoogle Scholar
  60. 60.
    Leipnik, R., Newton, T.: Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86(2), 63–67 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringYuan Ze UniversityZhongliTaiwan, ROC
  2. 2.Department of Electrical Electronic and Mechanical EngineeringLac Hong UniversityBien HoaVietnam

Personalised recommendations