Adaptive Fuzzy Output Feedback Control for Nonlinear Nonstrict-Feedback Time-Delay Systems with Full State Constraints

Article
  • 22 Downloads

Abstract

This paper investigates the adaptive fuzzy output feedback control problem for a class of nonstrict-feedback time-delay systems subject to full state constraints. An observer is designed to estimate the unavailable systems states. By incorporating the barrier Lyapunov function and introducing a variable separation approach, an adaptive fuzzy output feedback tracking controller is systematically designed to ensure that the full state constraints are not violated and all the signals of the closed-loop systems are uniformly ultimately bounded. At the same time, the tracking errors can fluctuate around the origin within a small neighborhood by appropriate choice of the design parameters. Finally, two simulation studies are worked out to show the effectiveness of the proposed approach.

Keywords

Adaptive output feedback control Nonstrict-feedback structure Full state constraints Time delay 

Notes

Acknowledgements

This work was supported in part by National Nature Science Foundation of China under Grant 61573013, 61673014.

References

  1. 1.
    Gilbert, E., Kolmanovsky, I.: Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor. Automatica 38(12), 2063–2073 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hu, T., Lin, Z.: Control systems with actuator saturation: analysis and design. Birkhauser, Boston (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Zhou, B., Duan, G.R., Lin, Z.: A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation. Automatica 47(2), 316–325 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Zhou, B., Li, Z.Y., Lin, Z.: Discrete-time l and l 2 norm vanishment and low gain feedback with their applications in constrained control. Automatica 49(1), 111–123 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010)CrossRefGoogle Scholar
  7. 7.
    Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Tee, K.P., Ge, S.S., Tay, F.E.H.: Adaptive control of electrostatic microactuators with bidirectional drive. IEEE Trans. Control. Syst. Technol. 17(2), 340–352 (2009)CrossRefGoogle Scholar
  10. 10.
    He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4), 722–732 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    He, W., Zhang, S., Ge, S.S.: Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans. Ind. Electron. 61(8), 4126–4133 (2014)CrossRefGoogle Scholar
  12. 12.
    He, W., Zhang, S., Ge, S.S.: Robust adaptive control of a thruster assisted position mooring system. Automatica 50(7), 1843–1851 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sun, L., Huo, W., Jiao, Z.X.: Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full state constraint. IEEE Trans. Ind. Electron. 64(1), 480–492 (2017)CrossRefGoogle Scholar
  14. 14.
    Kim, B.S., Yoo, S.J.: Approximation-based adaptive control of uncertain nonlinear pure-feedback systems with full state constraints. IET Control Theory Appl. 8(17), 2070–2081 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, Y.J., Tong, S.C.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64(2), 70–75 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Li J, Liu YJ (2015) Control of nonlinear systems with full state constraints using integral barrier Lyapunov functionals. In: International conference on informative and cybernetics for computational social systems, pp 66–71Google Scholar
  17. 17.
    Li, D.J., Li, J., Li, S.: Adaptive control of nonlinear systems with full state constraints using integral barrier Lyapunov function. Neurocomputing 186, 90–96 (2016)CrossRefGoogle Scholar
  18. 18.
    Wang, C.X., Wu, Y.Q., Yu, J.B.: Barrier Lyapunov functions-based dynamic surface control for pure-feedback systems with full state constraints. IET Control Theory Appl. 11(4), 524–530 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    He, W., Chen, Y.H., Yin, Z.: Adaptive neural network control of an uncertain robot with full state constraints. IEEE Trans. Cyber. 46(3), 620–629 (2016)CrossRefGoogle Scholar
  20. 20.
    Yue, H.Y., Li, J.M.: Output feedback adaptive fuzzy control for a class of nonlinear systems with input delay and unknown control directions. J. Franklin Inst. 350, 129–154 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Li, J., Chen, W.S., Li, J.M., Fang, Y.Q.: Adaptive NN output feedback stabilization for a class of stochastic nonlinear strict-feedback systems. ISA Trans. 48, 468–475 (2009)CrossRefGoogle Scholar
  22. 22.
    Chen, W.S., Li, J.M.: Decentralized output feedback neural control for systems with unknown interconnections. IEEE Trans. Syst. Man. Cybern. 38(1), 258–266 (2008)CrossRefGoogle Scholar
  23. 23.
    K.P. Tee, S.S. Ge (2009) Control of nonlinear systems with full state constraint using a barrier Lyapunov function. In: IEEE conference on decision and control, pp 8618–8623Google Scholar
  24. 24.
    Yin, Z., He, W., Yang, C.G.: Tracking control of a marine surface vessel with full state constraints. Int. J. Syst. Sci. 48(3), 535–546 (2017)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Bai, R.: Neural network control-based adaptive design for a class of DC motor systems with the full state constraints. Neurocomputing 168, 65–69 (2015)CrossRefGoogle Scholar
  26. 26.
    Yin, Z., He, W., Ge, W.L.: Approximation-based control of a marine surface vessel with full state constraints. Intell. Robot. Appl. 9244, 111–125 (2015)Google Scholar
  27. 27.
    Liu, Y.J., Li, J., Tong, S.C.: Neural network control-based adaptive learning design for nonlinear systems with full state constraints. IEEE Trans. Neural Netw. Learn. Syst. 27(7), 1562–1571 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kim, B.S., Yoo, S.J.: Approximation-based adaptive control of uncertain nonlinear pure-feedback systems with full state constraints. IET Control Theory Appl. 8(17), 2070–2081 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, Y.J., Tong, S.C.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Gao, Y., Tong, S.C., Li, Y.M.: Adaptive fuzzy backstepping output feedback control for a class of uncertain stochastic nonlinear system in pure-feedback form. Neurocomputing 122, 126–133 (2013)CrossRefGoogle Scholar
  31. 31.
    Babuska, B., Schutter, B.D., Lendek Z, Guerra, TM.: Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models. Studies in Fuzziness and Soft Computing. Springer, Berlin (2011)Google Scholar
  32. 32.
    Li, Y.M., Tong, S.C.: Adaptive fuzzy output constrained control design for multi-input multioutput stochastic nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 47(12), 4086–4095 (2017)CrossRefGoogle Scholar
  33. 33.
    Liu, Y.J., Li, D.J., Tong, S.C.: Adaptive output feedback control for a class of nonlinear systems with full state constraints. Int. J. Control 87(2), 281–290 (2013)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Li, D.P., Li, D.J.: Adaptive neural tracking control for nonlinear time-delay systems with full state constraints. IEEE Trans. Syst. Man Cybern.: Syst. 47(7), 1590–1601 (2017)CrossRefGoogle Scholar
  35. 35.
    Chen, B., Zhang, H.G., Lin, C.: Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 89–98 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wang, H.Q., Liu, K.F., Liu, X.P.: Neural-based adaptive output feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Cybern. 45(9), 1977–1987 (2015)CrossRefGoogle Scholar
  37. 37.
    Yu, Z.X., Li, S.G., Li, F.F.: Observer-based adaptive neural dynamic surface control for a class of nonstrict-feedback stochastic nonlinear systems. Int. J. Syst. Sci. 47(1), 194–208 (2016)CrossRefMATHGoogle Scholar
  38. 38.
    Wu, J., Su, B.Y., Li, J.: Adaptive fuzzy control for full states constrained systems with nonstrict-feedback form and unknown nonlinear dead zone. Inf. Sci. 376, 233–247 (2017)CrossRefGoogle Scholar
  39. 39.
    Li, H., Bai, L., Wang, L., Zhou, Q., Wang, H.: Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–12 (2016)Google Scholar
  40. 40.
    Yao, B., Tomizuka, M.: Adaptive robust control of SISO nonlinear systems in a semi-strict-feedback form. Automatica 33(5), 893–900 (1997)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Yao, B., Tomizuka, M.: Adaptive robust control of MIMO nonlinear systems in semi-strict-feedback forms. Automatica 37(9), 1305–1321 (2001)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Wang, H.Q., Liu, X.P., Liu, K.F.: Approximation-based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems. IEEE Trans. Fuzzy Syst. 23(5), 1746–1760 (2015)CrossRefGoogle Scholar
  43. 43.
    Yoo, S.J.: Approximation-based adaptive tracking of a class of uncertain nonlinear time-delay systems in nonstrict-feedback form. Int. J. Syst. Sci. 48(7), 1347–1355 (2017)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Zhao, X.D., Yang, H.J., Karimi, H.R., Zhu, Y.Z.: Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time-delay. IEEE Trans. Cybern. 46(6), 1337–1349 (2016)CrossRefGoogle Scholar
  45. 45.
    Yang, H.J., Shi, P., Zhao, X.D., Shi, Y.: Adaptive output feedback neural tracking control for a class of nonstrict-feedback nonlinear systems. Inf. Sci. 334, 205–218 (2016)CrossRefGoogle Scholar
  46. 46.
    Li, Y.M., Tong, S.C.: Adaptive fuzzy output feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 47(4), 1007–1016 (2017)CrossRefGoogle Scholar
  47. 47.
    Tong, S.C., Li, Y.M., Sui, S.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 24(6), 1441–1454 (2016)CrossRefGoogle Scholar
  48. 48.
    Li, Y.M., Tong, S.C., Liu, L., Feng, G.: Adaptive output feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Sun, C.H.: Relaxed stabilization conditions for the T–S fuzzy system with input constraints. Int. J. Fuzzy Syst. 18(2), 168–176 (2016)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Tu, N.A.: Improved LMI conditions for local quadratic stabilization of constrained Takagi-Sugeno fuzzy systems. Int. J. Fuzzy Syst. 1, 1–13 (2016)Google Scholar
  51. 51.
    Hua, C., Wang, Q.G., Guan, X.P.: Adaptive fuzzy output feedback controller design for nonlinear time-delay systems with unknown control direction. IEEE Trans. Syst. Man Cybern. B Cybern. 39(2), 363–374 (2009)CrossRefGoogle Scholar
  52. 52.
    Yu, Z.X., Du, H.B.: Adaptive neural control for uncertain stochastic nonlinear strict-feedback systems with time-varying delays: a Razumikhin functional method. Neurocomputing 74(12), 2072–2082 (2011)CrossRefGoogle Scholar
  53. 53.
    Chen, W.S., Jiao, L.C., Li, J., Li, R.H.: Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst. Man Cybern. B Cybern. 40(3), 939–950 (2010)CrossRefGoogle Scholar
  54. 54.
    Zhou, Q., Shi, P., Xu, S.Y., Li, H.Y.: Observer-based adaptive neural network control for nonlinear stochastic systems with time delay. IEEE Trans. Neural Netw. Learn. Syst. 24(1), 71–80 (2013)CrossRefGoogle Scholar
  55. 55.
    Li, Y., Tong, S.C., Li, Y.M.: “Observer-based adaptive fuzzy backstepping control for strict-feedback stochastic nonlinear systems with time delays. Int. J. Innov. Comput. Inf. Control 8(12), 8103–8114 (2012)Google Scholar
  56. 56.
    Su, X.J., Shi, P., Wu, L., Song, Y.D.: A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 21(4), 655–671 (2013)CrossRefGoogle Scholar
  57. 57.
    Wang, M., Chen, B., Liu, X., Shi, P.: Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets Syst. 159(8), 949–967 (2008)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Hua, C.C., Guan, X.P., Shi, P.: Robust backsteping control for a class of time delayed systems. IEEE Trans. Autom. Control 50(6), 894–899 (2005)CrossRefMATHGoogle Scholar
  59. 59.
    Daniel, W., Li, J.M., Niu, Y.G.: Adaptive neural control for a class of nonlinearly parametric time-delay systems. IEEE Trans. Neural Netw. 16(3), 625–635 (2005)CrossRefGoogle Scholar
  60. 60.
    Li, J.M., Yue, H.Y.: Adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems with input delays and state time-varying delay. Int. J. Adapt. Control Signal Process. 29, 614–638 (2015)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Li, J.M., Yue, H.Y.: Adaptive fuzzy tracking control for stochastic nonlinear systems with unknown time-varying delays. Appl. Math. Comput. 256, 514–528 (2015)MathSciNetMATHGoogle Scholar
  62. 62.
    Hua, C.C., Guan, X.P., Shi, P.: Robust output feedback tracking control for time-delay nonlinear systems using neural network. IEEE Trans. Neural Netw. 18(2), 495–505 (2007)CrossRefGoogle Scholar
  63. 63.
    Chen, B., Lin, C., Liu, X.P.: Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 27–36 (2016)CrossRefGoogle Scholar
  64. 64.
    Zhou, Q., Shi, P., Xu, S.Y., Li, H.Y.: Adaptive output feedback control for nonlinear time-delay systems by fuzzy approximation approach. IEEE Trans. Fuzzy Syst. 21(22), 301–313 (2013)CrossRefGoogle Scholar
  65. 65.
    Zhang, T.P., Ge, S.S.: Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Netw. 20(3), 483–497 (2009)CrossRefGoogle Scholar
  66. 66.
    Chen, B., Liu, X.P., Liu, K.F.: Fuzzy approximation-based adaptive control of nonlinear delayed systems with unknown dead zone. IEEE Trans. Fuzzy Syst. 22(2), 237–248 (2014)CrossRefGoogle Scholar
  67. 67.
    Zhai, D., Xi, C.J., Dong, J.X., Zhang, Q.L.: Delay-estimation-based adaptive fuzzy memory control for a class of uncertain nonlinear time-delay systems. Fuzzy Sets Syst. 316, 1–19 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anPeople’s Republic of China

Personalised recommendations