Advertisement

International Journal of Fuzzy Systems

, Volume 20, Issue 3, pp 750–758 | Cite as

Conditions of Stabilization of Positive Continuous Takagi–Sugeno Fuzzy Systems with Delay

Article
  • 65 Downloads

Abstract

This paper deals with the problem of stability and stabilization of positive Takagi–Sugeno (T–S) fuzzy systems with fixed delays. The obtained conditions are given under the linear programming technique while imposing positivity constraint for the closed-loop system. New delay-independent stabilization conditions are derived by using a well-appropriated Lyapunov–Krasovskii functional. A real plant model is studied to show the applicability of the design procedure, while a numerical example is used to compare with LMI-based techniques.

Keywords

T–S fuzzy systems Positive systems Fixed delay Lyapunov–Krasovskii functional Stabilization Linear program 

References

  1. 1.
    Ait Rami, M., Tadeo, F.: Linear programming approach to impose positiveness in closed-loop and estimated states. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006)Google Scholar
  2. 2.
    Ait Rami, M., Tadeo, F.: Controller synthesis for positive linear systems with bounded controls. IEEE Trans. Circuits Syst. II 54(2), 151–155 (2007)CrossRefGoogle Scholar
  3. 3.
    Benzaouia, A., Hmamed, A., El Hajjaji, A.: Stabilization of controlled positive discrete-time T–S fuzzy systems by state feedback control. Int. J. Adapt. Control Signal Process. 24(12), 1091–1106 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Benzaouia, A., El Hajjaji, A.: Delay-dependent stabilization conditions of controlled positive T–S fuzzy systems with time varying delay. IJCIC vol. 7, no. 4 (2011)Google Scholar
  5. 5.
    Benzaouia, A., El Hajjaji, A.: Advanced Takagi–Sugeno Systems: Delay and saturation, Studies in Systems, Decision and Control, vol. 8. Springer, New York (2014)MATHGoogle Scholar
  6. 6.
    Benzaouia, A., Oubah, R., El Hajjaji, A.: Stabilization of positive Takagi–Sugeno fuzzy discrete-time systems with multiple delays and bounded controls. J. Frankl. Inst. 351, 3719–3733 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Benzaouia, A., Oubah, R.: Stability and stabilization by output feedback control of positive Takagi–Sugeno fuzzy discrete-time systems with multiple delays. Nonlinear Anal. Hybrid Syst. 11(1), 154–170 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benzaouia, A., Mesquine, F., Benhayoun, M., Schulte, H., Georg, S.: Stabilization of positive constrained T–S fuzzy systems: application to a buck converter. J. Frankl. Inst. 351, 4111–4123 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Benzaouia, A., Mesquine, F., Hmamed, A., Benhayoun, M., Tadeo, F.: Stabilization of continuous-time fractional positive systems by using a Lyapunov function. IEEE Trans. Autom. Control 59(8), 2203–2208 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Benzaouia, A., El Hajjaji, A.: Conditions of stabilization of positive continuous Takagi–Sugeno fuzzy systems with delay. IEEE FUZ, Vancouver, Canada (2016)Google Scholar
  11. 11.
    Berman, A., Neumann, M., Stern, R.J.: Nonnegative Matrices in Dynamic Systems. Wiley, New York (1989)MATHGoogle Scholar
  12. 12.
    Chadli, M., Reza Karim, H.: Observer design for unknown inputs Takagi–Sugeno models. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)CrossRefGoogle Scholar
  13. 13.
    Chen, J., Xu, S., Ma, Q., Zhuang, G.: Relaxed stability conditions for discrete time TS fuzzy systems via double homogeneous polynomial approach. Int. J. Fuzzy Syst. (2017).  https://doi.org/10.1007/s40815-017-0339-5 Google Scholar
  14. 14.
    Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Application. Wiley, New York (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Gassara, H., El Hajjaji, A., Chaabane, M.: Observer-based robust H reliable control for uncertain T–S fuzzy systems with state time delay. IEEE Trans. Fuzzy Syst. 18(6), 1027–1040 (2010)CrossRefMATHGoogle Scholar
  16. 16.
    Gao, H., Lam, J., Wang, C., Xu, S.: Control for stability and positivity: equivalent conditions and computation. IEEE Trans. Circuits Syst. II 52, 540–544 (2005)CrossRefGoogle Scholar
  17. 17.
    Gao, Q., Feng, G., Xi, Z., Wang, Y., Qiu, J.: Robust \(H_\infty\) control of T–S fuzzy time-delay systems via a new sliding-mode control scheme. IEEE Trans. Fuzzy Syst. 22(2), 459–465 (2014)CrossRefGoogle Scholar
  18. 18.
    Hmamed, A., Benzaouia, A., Tadeo, F., Ait Rami, M.: Positive stabilization of discrete-time systems with unknown delay and bounded controls. European Control Conference, Kos, Greece, 2–5 July (2007)Google Scholar
  19. 19.
    Hmamed, A., Benzaouia, A., Ait Rami, M., Tadeo, F.: Memoryless control to drive states of delayed continuous-time systems within the nonnegative orthant. In: Proceedings of the 18th World Congress, IFAC, Seoul, Korea, 6–11 July (2008)Google Scholar
  20. 20.
    Hmamed, A., Benzaouia, A., Tadeo, F., Ait Rami, M.: Memoryless control of delayed continuous-time systems within the nonnegative orthant. IFAC World Congress, Korea (2008)Google Scholar
  21. 21.
    Hmamed, A., Ait Rami, M., Benzaouia, A., Tadeo, F.: Stabilization under constrained states and controls of positive systems with time delays. Eur. J. Control 18(2), 182–190 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hmamed, A., Mesquine, F., Benzaouia, A., Benhayoun, M., Tadeo, F.: Continuous-time fractional positive systems with bounded states, 52nd CDC. Florence, Italy, pp. 2127–2132 (2013)Google Scholar
  23. 23.
    Kaczorek, T.: Positive 1D and 2D Systems. Springer, New York (2002)CrossRefMATHGoogle Scholar
  24. 24.
    Kaczorek, T.: Stability of positive continuous-time linear systems with delays. Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 57, no. 4 (2009)Google Scholar
  25. 25.
    Kchaou, M.: Robust \(H\infty\) \(H\infty\) observer-based control for a class of (TS) fuzzy descriptor systems with time-varying delay. Int. J. Fuzzy Syst. 19(3), 909–924 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)CrossRefGoogle Scholar
  27. 27.
    Li, H., Gao, Y., Shi, P., Zhao, X.: Output feedback control for TS fuzzy delta operator systems with time varying delays via an input output approach. IEEE Trans. Fuzzy Syst. 23(4), 1100–1112 (2015)CrossRefGoogle Scholar
  28. 28.
    Nachidi, M., Tadeo, F., Hmamed, A., Benzaouia, A.: Static output-feedback stabilization for time-delay Takagi–Sugeno fuzzy systems. In: IEEE Conference on Control and Decision, Louisiana (2007)Google Scholar
  29. 29.
    Nachidi, M., Benzaouia, A., Tadeo, F.: Based approach for output-feedback stabilization for discrete time Takagi–Sugeno systems. IEEE Trans. Fuzzy Syst. 16(5), 1188–1196 (2008)CrossRefGoogle Scholar
  30. 30.
    Oubah, R., Benzaouia, A., El Hajjaji, A., Tadeo, F.: Stability and stabilization of positive Takagi–Sugeno fuzzy continuous systems with delay. IEEE CDC-ECC Orlando, Florida, 10–15 December (2011)Google Scholar
  31. 31.
    Oudghiri, M., Chadli, M., El Hajjaji, A.: One-step procedure for robust output fuzzy control. In: Proceeding of the 15th Mediterranean Conference on Control and Automation, IEEE-Med’07, Athens, Greece (2007)Google Scholar
  32. 32.
    Takagi, T., Sugeno, M.: Fuzzy, identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)CrossRefMATHGoogle Scholar
  33. 33.
    Tong, S., Sui, S., Li, Y.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)CrossRefGoogle Scholar
  34. 34.
    Tong, S.-C., Li, Y.-M., Feng, G., Li, T.-S.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)CrossRefGoogle Scholar
  35. 35.
    Xie, X., Ma, H., Zhao, Y., Ding, D.-W., Wang, Y.: Control synthesis of discrete-time T–S fuzzy systems based on a novel non-PDC control scheme. IEEE Trans. Fuzzy Syst. 21(1), 147–157 (2013)CrossRefGoogle Scholar
  36. 36.
    Xu, S., Lam, J.: Robust \(H_{\infty }\) control for uncertain discrete-time-delay fuzzy systems via output feedback controllers. IEEE Trans. Fuzzy Syst. 13(1), 82–93 (2005)CrossRefGoogle Scholar
  37. 37.
    Zhao, X., Liuc, X., Yin, S., Lia, H.: Improved results on stability of continuous-time switched positive linear systems. Automatica 50(2), 614–621 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhao, X., Zhang, L., Shi, P., Karimi, H.Reza: Novel stability criteria for T–S fuzzy systems. IEEE Trans. Fuzzy Syst. 22(2), 313–323 (2014)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LAEPT, Faculty of Science SemlaliaUniversity Cadi AyyadMarrakechMorocco
  2. 2.MIS LaboratoryUniversity of Picardie Jules VerneAmiensFrance

Personalised recommendations