International Journal of Fuzzy Systems

, Volume 20, Issue 5, pp 1671–1684 | Cite as

Cascade Training Multilayer Fuzzy Model for Nonlinear Uncertain System Identification Optimized by Differential Evolution Algorithm

  • Cao Van Kien
  • Ho Pham Huy Anh
  • Nguyen Thanh Nam
Article
  • 54 Downloads

Abstract

This paper proposes a new cascade training multilayer fuzzy logic for identifying forward model of multiple-inputs multiple-outputs (MIMO) nonlinear double-coupled fluid tank system based on experiment platform. The novel multilayer fuzzy model consists of multiple MISO model; for each MISO model, it composes of multiple single fuzzy Takagi–Sugeno (T–S) models. The cascade training using optimization algorithms optimally trained multilayer fuzzy model one by one. All parameters of multilayer fuzzy model were optimally and comparatively identified using DE, GA and PSO optimization algorithms. Then, the proposed method results are compared with normal training method results. The experimental results show that proposed method gives better performance than the normal training. Hence, the novel proposed optimized multilayer fuzzy model is efficiently applied for identifying MISO system. The experiment cascade training is clearly presented. It proves more accurate and takes less time to compute than the normal training, and it seems promisingly scalable as a simple and efficient method to successfully identify and control various uncertain nonlinear large-scale MIMO systems.

Keywords

Multilayer fuzzy model Cascade training Differential evolution (DE) algorithm Nonlinear double-coupled fluid tank system Multiple-inputs multiple-outputs (MIMO) system Fuzzy Takagi–Sugeno (T–S) model 

Notes

Acknowledgements

This research is fully funded by Viet Nam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.01-2015.23, Viet Nam.

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(8), 338–3365 (1965)CrossRefMATHGoogle Scholar
  2. 2.
    Espinosa, J., Vandewalle, J., Wertz, V.: Fuzzy Logic, identification and predictive control. Springer, Berlin (2005)MATHGoogle Scholar
  3. 3.
    Anh, H.P.H., Ahn, K.K.: Identification of pneumatic artificial muscle manipulators by a MGA-based nonlinear NARX fuzzy model. Mechatronics 19(1), 106–133 (2009)CrossRefGoogle Scholar
  4. 4.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)CrossRefMATHGoogle Scholar
  5. 5.
    Mendes, J., Araújo, R., Souza, F.: Adaptive fuzzy identification and predictive control for industrial processes. Expert Syst. Appl. 40(17), 6964–6975 (2013)CrossRefGoogle Scholar
  6. 6.
    Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M.: New method for fuzzy nonlinear modelling based on genetic programming. Lecture notes in computer science] artificial intelligence and soft computing, vol. 9692, no. 38, pp. 432–449 (2016)Google Scholar
  7. 7.
    Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)CrossRefGoogle Scholar
  8. 8.
    Bagis, A., Konar, M.: Comparison of Sugeno and Mamdani fuzzy models optimized by artificial bee colony algorithm for nonlinear system modelling. Trans. Inst. Meas. Control 38(5), 579–592 (2016)CrossRefGoogle Scholar
  9. 9.
    Ferdaus, M.M. et al. Fuzzy clustering based nonlinear system identification and controller development of Pixhawk based quadcopter. In: Advanced Computational Intelligence (ICACI), 2017 Ninth International Conference on. IEEE, pp. 223–230 (2017)Google Scholar
  10. 10.
    Tavoosi, J., Suratgar, A.A., Menhaj, M.B.: Nonlinear system identification based on a self-organizing type-2 fuzzy RBFN. Eng. Appl. Artif. Intell. 54, 26–38 (2016)CrossRefGoogle Scholar
  11. 11.
    Aleksovski, D., Kocijan, J., Džeroski, S.: Ensembles of fuzzy linear model trees for the identification of multi-output systems. IEEE Trans. Fuzzy Syst. 24(4), 916–929 (2016)CrossRefGoogle Scholar
  12. 12.
    Raju, G., Zhou, J., Kisner, R.: Hierarchical fuzzy control. Int. J. Control 54(5), 1201–1216 (1991)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sun, L., Huo, W. Adaptive fuzzy control of spacecraft proximity operations using hierarchical fuzzy systems. In: IEEE/ASME Transactions on Mechatronics, vol. 4435, no. c, pp. 1–1 (2015)Google Scholar
  14. 14.
    Rodríguez, F.O., de Jesús Rubio, J., Gaspar, C.R.M., Tovar, J.C., Armendáriz, M.A.M.: Hierarchical fuzzy CMAC control for nonlinear systems. Neural Comput. Appl. 23(S1), 323–331 (2013)CrossRefGoogle Scholar
  15. 15.
    Tu, K.Y., Lee, T.T., Wang, W.J.: Design of a multi-layer fuzzy logic controller for multi-input multi-output systems. Fuzzy Sets Syst. 111(2), 199–214 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Li, H., Wu, C., Yin, S., Lam, H.K.: Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. 24(5), 1233–1245 (2016)CrossRefGoogle Scholar
  17. 17.
    Al-Hmouz, R., Pedrycz, W., Balamash, A., Morfeq, A.: Hierarchical system modeling. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2017)Google Scholar
  18. 18.
    Cervantes, L., Castillo, O., Soria, J.: Hierarchical aggregation of multiple fuzzy controllers for global complex control problems. Appl. Soft Comput. 38, 851–859 (2016)CrossRefGoogle Scholar
  19. 19.
    Gotmare, A., Bhattacharjee, S.S., Patidar, R., George, N.V.: Swarm and evolutionary computing algorithms for system identification and filter design: a comprehensive review. Swarm Evol. Comput. 32, 68–84 (2017)CrossRefGoogle Scholar
  20. 20.
    Rastegar, S., Araújo, R., Mendes, J.: Online identification of Takagi–Sugeno fuzzy models based on self-adaptive hierarchical particle swarm optimization algorithm. Appl. Math. Model. 45, 606–620 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Loussifi, H., Nouri, K., Braiek, N.B.: A new efficient hybrid intelligent method for nonlinear dynamical systems identification: the Wavelet Kernel Fuzzy Neural Network. Commun. Nonlinear Sci. Numer. Simul. 32, 10–30 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Konar, M., Bagis, A.: Performance comparison of particle swarm optimization, differential evolution and artificial bee colony algorithms for fuzzy modeling of nonlinear systems. Elektronika ir Elektrotechnika 22(5), 8–13 (2016)CrossRefGoogle Scholar
  23. 23.
    Kien, C.V., Son, N.N., Anh, H.P.H.: Identification of 2-DOF pneumatic artificial muscle system with multilayer fuzzy logic and differential evolution algorithm. In: The 12th IEEE Conference on Industrial Electronics and Applications (ICIEA 2017), June 18–20, Siem Reap, Cambodia, pp. 1261–1266Google Scholar
  24. 24.
    Tong, S., Sun, K., Sui, S.: Observer-based adaptive fuzzy decentralized optimal control design for strict feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. (2017).  https://doi.org/10.1109/TFUZZ.2017.2686373,PP(99) Google Scholar
  25. 25.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Cao Van Kien
    • 1
  • Ho Pham Huy Anh
    • 1
  • Nguyen Thanh Nam
    • 2
  1. 1.FEEEHo Chi Minh City University of Technology, VNU-HCMHo Chi Minh CityViệt Nam
  2. 2.DCSELABHo Chi Minh City University of Technology, VNU-HCMHo Chi Minh CityViệt Nam

Personalised recommendations