International Journal of Fuzzy Systems

, Volume 20, Issue 4, pp 1115–1129 | Cite as

A Novel Power Control Technique for Series Resonant Inverter-Fed Induction Heating System with Fuzzy-Aided Digital Pulse Density Modulation Scheme

  • Pradeep Vishnuram
  • Gunabalan Ramachandiran
  • Sridhar Ramasamy


The research on Induction heating aided by power electronic control system is so vivacious in recent past. The selection of switching techniques remains to be the bottleneck for power engineering research as inappropriate selection may result in relentless switching loss, conduction loss, high current ripple, and lower power density. Therefore, modern design emphasizes multi-output resonant inverters, which not only have high efficiency but also facilitate resonant switching. This work proposes a single-stage ac–ac dual half-bridge series resonant inverter, with reduced number of switching devices. The proposed converter is controlled with fuzzy logic-aided digital pulse density modulation technique which aids in power control task. This intelligent power control scheme improves the system efficiency with less time-domain specifications. The simulation of the work is realized in MATLAB/Simulink arena, and hardware circuits are validated using dsPIC30F4011 microcontroller. The results reveal that the proposed schemes are highly viable and effective for the rendered application.


Fuzzy logic controller Induction heating Power control Single-stage power conversion 


  1. 1.
    Acero, J., Burdio, J.M., Barragan, L.A., Navarro, D., Alonso, R., Garcia, J.R., Monterde, F., Hernandez, P., Llorente, S., Garde, I.: Domestic induction appliances: an overview of recent research. IEEE Ind. Appl. Mag. 16(2), 39–47 (2010)CrossRefGoogle Scholar
  2. 2.
    Pham, H.N., Fujita, H., Ozaki, K., Uchida, N.: Dynamic analysis and control for resonant currents in a zone-control induction heating system. IEEE Trans. Power Electron. 28(3), 1297–1307 (2013)CrossRefGoogle Scholar
  3. 3.
    Yilmaz, I., Ermis, M., Cadirci, I.: Medium-frequency induction melting furnace as a load on the power system. IEEE Trans. Ind. Appl. 48(4), 1203–1214 (2012)CrossRefGoogle Scholar
  4. 4.
    Egalon, J., Caux, S., Maussion, P., Souley, M., Pateau, O.: Multiphase system for metal disc induction heating: modeling and RMS current control. IEEE Trans. Ind. Appl. 48(5), 1692–1699 (2012)CrossRefGoogle Scholar
  5. 5.
    Millan, I., Burdio, J.M., Acero, J., Lucia, O., Llorente, S.: Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electron. 4(5), 587–592 (2011)CrossRefGoogle Scholar
  6. 6.
    Lucia, O., Burdio, J.M., Millan, J.I., Acero, J., Barragan, L.A.: Efficiency-oriented design of ZVS half-bridge series resonant inverter with variable frequency duty cycle control. IEEE Trans. Power Electron. 25(7), 1671–1674 (2010)CrossRefGoogle Scholar
  7. 7.
    Nagarajan, B., Reddysathi, R.: CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system. Int. J. Electron. 103(1), 160–176 (2016)CrossRefGoogle Scholar
  8. 8.
    Park, N.J., Lee, D.Y., Hyun, D.S.: A power control scheme with constant switching frequency in class-D inverter for induction-heating jar application. IEEE Trans. Ind. Electron. 54(3), 1252–1260 (2007)CrossRefGoogle Scholar
  9. 9.
    Sarnago, H., Lucia, O., Mediano, A., Burdio, J.M.: A class-E direct AC–AC converter with multi cycle modulation for induction heating systems. IEEE Trans. Ind. Electron. 61(5), 2521–2530 (2014)CrossRefGoogle Scholar
  10. 10.
    Trentin, A., Zanchetta, P., Clare, J., Wheeler, P.: Automated optimal design of input filters for direct ac/ac matrix converters. IEEE Trans. Ind. Electron. 59(7), 2811–2823 (2012)CrossRefGoogle Scholar
  11. 11.
    Li, H.L., Hu, A.P., Covic, G.A.: A direct ac–ac converter for inductive power-transfer systems. IEEE Trans. Power Electron. 27(2), 661–668 (2012)CrossRefGoogle Scholar
  12. 12.
    Yamamoto, E., Hara, H., Uchino, T., Kawaji, M., Kume, T.J., Jun Koo, K., Krug, H.P.: Development of MCs and its applications in industry. IEEE Ind. Electron. Mag. 5(1), 4–12 (2011)CrossRefGoogle Scholar
  13. 13.
    Sarnago, H., Mediano, A., Lucia, O.: High efficiency ac–ac power electronic converter applied to domestic induction heating. IEEE Trans. Power Electron. 27(8), 3676–3684 (2012)CrossRefGoogle Scholar
  14. 14.
    Sarnago, H., Lucia, O., Mediano, A., Burdio, J.M.: Improved operation of SiC-BJT-based series resonant inverter with optimized base drive. IEEE Trans. Power Electron. 29(10), 5097–5101 (2014)CrossRefGoogle Scholar
  15. 15.
    Sarnago, H., Lucia, O., Mediano, A., Burdio, J.M.: High efficiency parallel quasi-resonant current source inverter featuring SiC MOSFETs for induction heating systems with coupled inductors. IET Power Electron. 6(1), 183–191 (2013)CrossRefGoogle Scholar
  16. 16.
    Bayindir, N.S., Kukrer, O., Yakup, M.: DSP-based PLL-controlled 50–100 kHz 20 kW high-frequency induction heating system for surface hardening and welding applications. In: Proceedings of Institution of Electric Engineering—Power Applications, vol. 150(3), pp. 365–371 (2003)Google Scholar
  17. 17.
    Nagarajan, B., Reddysathi, R.: Phase locked loop based pulse density modulation scheme for the power control of induction heating applications. J. Power Electron. 15(1), 65–77 (2015)CrossRefGoogle Scholar
  18. 18.
    Mishima, T., Takami, C., Nakaoka, M.: A new current phasor controlled ZVS twin half-bridge high-frequency resonant inverter for induction heating. IEEE Trans. Ind. Electron. 61(5), 2531–2545 (2014)CrossRefGoogle Scholar
  19. 19.
    Esteve, V., Jordan, J., Sanchis-Kilders, E., Dede, E.J., Maset, E., Ejea, J.B.: A ferreres.: improving the reliability of series resonant inverters for induction heating applications. IEEE Trans. Ind. Electron. 61(5), 2564–2572 (2014)CrossRefGoogle Scholar
  20. 20.
    Forest, F., Faucher, S., Gaspard, J.Y., Montloup, D., Huselstein, J.J., Joubert, C.: Frequency-synchronized resonant converters for the supply of multi windings coils in induction cooking appliances. IEEE Trans. Ind. Electron. 54(1), 441–452 (2007)CrossRefGoogle Scholar
  21. 21.
    Forest, F., Laboure, E., Costa, F., Gaspard, J.Y.: Principle of a multi load/single converter system for low power induction heating. IEEE Trans. Ind. Electron. 15(2), 223–230 (2000)Google Scholar
  22. 22.
    Lucia, O., Burdio, J.M., Barragan, L.A., Acero, J., Millan, I.: Series resonant multi inverter for multiple induction heaters. IEEE Trans. Power Electron. 24(11), 2860–2868 (2010)CrossRefGoogle Scholar
  23. 23.
    Lucia, O., Carretero, C., Burdio, J.M., Acero, J., Almazan, F.: Multiple output resonant matrix converter for multiple induction heaters. IEEE Trans. Ind. Appl. 48(4), 1387–1396 (2012)CrossRefGoogle Scholar
  24. 24.
    Carretero, C., Lucia, O., Acero, J., Burdio, J.M.: Computational modeling of two partly-coupled coils supplied by a double half-bridge resonant inverter for induction heating appliances. IEEE Trans. Ind. Electron. 60(8), 3092–3105 (2013)CrossRefGoogle Scholar
  25. 25.
    Sanz, F., Sagues, C., Llorente, S.: Induction heating appliance with a mobile double-coil inductor. IEEE Trans. Ind. Appl. 51(3), 1945–1952 (2015)CrossRefGoogle Scholar
  26. 26.
    Xu, Q., Ma, F., Luo, A., Chen, Y., He, Z.: Hierarchical direct power control of modular multilevel converter for tundish heating. IEEE Trans. Ind. Electron. 63(12), 7919–7929 (2016)CrossRefGoogle Scholar
  27. 27.
    Namadmalan, A.: Universal tuning system for series-resonant induction heating applications. IEEE Trans. Ind. Electron. 64(4), 2801–2808 (2017)CrossRefGoogle Scholar
  28. 28.
    Mishima, T., Sakamoto, S., Ide, C.: ZVS phase-shift PWM-controlled single-stage boost full-bridge AC–AC converter for high-frequency induction heating applications. IEEE Trans. Ind. Electron. 64(3), 2054–2061 (2017)CrossRefGoogle Scholar
  29. 29.
    Morandi, A., Fabbri, M.: In-depth induction heating of large steel slabs by means of a dc saturating field produced by superconducting coils. IEEE Trans. Appl. Supercond. 26(4), 1–7 (2016)Google Scholar
  30. 30.
    Esteve, V., Sanchis-Kilders, E., Maset, E.: Enhanced pulse-density-modulated power control for high-frequency induction heating inverters. IEEE Trans. Ind. Electron. 62(11), 6905–6914 (2015)CrossRefGoogle Scholar
  31. 31.
    Nagarajan, B., Reddysathi, R., Vishnuram, P.: Power tracking control of domestic induction heating system using pulse density modulation scheme with the fuzzy logic controller. J. Electr. Eng. Technol. 9(6), 1978–1987 (2014)CrossRefGoogle Scholar
  32. 32.
    Sarnago, H., Lucıa, O., Mediano, A., Burdıo, J.M.: Direct AC– AC resonant boost converter for efficient domestic induction heating applications. IEEE Trans. Power Electron. 29(3), 1128–1139 (2014)CrossRefGoogle Scholar
  33. 33.
    Bhanu, P., Pappa, N.: SVPWM: torque level controlling of wind turbine system using fuzzy and ABC-DQ transformation. N. Int. J. Fuzzy Syst. 19(1), 141–154 (2017)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Pradeep Vishnuram
    • 1
  • Gunabalan Ramachandiran
    • 2
  • Sridhar Ramasamy
    • 1
  1. 1.Department of Electrical and Electronics EngineeringSRM UniversityChennaiIndia
  2. 2.School of Electrical and Electronics EngineeringVIT UniversityChennaiIndia

Personalised recommendations