Advertisement

International Journal of Fuzzy Systems

, Volume 20, Issue 3, pp 782–790 | Cite as

Finite-Time Adaptive Fuzzy Tracking Control for a Class of Nonlinear Systems with Unknown Hysteresis

  • Wenshun Lv
  • Fang WangEmail author
Article

Abstract

An adaptive finite-time tracking control issue for a class of nonlinear systems with unknown hysteresis is considered in this manuscript. We construct a fuzzy adaptive controller on foundation of a backstepping method. We prove that all the signals in the system are semi-global uniformly finite-time bounded under the designed controller, even though unknown hysteresis in the actuator is considered . At last, the validity of the proposed control scheme is demonstrated by an example.

Keywords

Nonlinear systems Hysteresis Adaptive control Fuzzy logic systems Finite-time stability Nonstrict-feedback 

References

  1. 1.
    Chen, B., Liu, X.: Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Trans. Fuzzy Syst. 15(2), 287–300 (2007)CrossRefGoogle Scholar
  2. 2.
    Mao, J., Xiang, Z., Huang, S.: Adaptive finite-time tracking control for a class of switched nonlinear systems with unmodeled dynamics. Neurocomputing 196, 42–52 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhou, Q., Wu, C., Shi, P.: Observer-based adaptive fuzzy tracking control of nonlinear systems with time delay and input saturation. Fuzzy Sets Syst. 316, 49–68 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wang, H., Chen, B., Liu, X., Lin, C.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43(6), 2093–2104 (2013)CrossRefGoogle Scholar
  5. 5.
    Kayacan, E., Ramonf, H., Saeys, W.: Adaptive neuro-fuzzy control of a spherical rolling robot using sliding-mode-control-theory-based online learning algorithm. IEEE Trans. Cybern. 43(1), 170–179 (2013)CrossRefGoogle Scholar
  6. 6.
    Li, C., Gao, J., Yi, J., Zhang, G.: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems. IEEE Trans. Fuzzy Syst. (2016). doi: 10.1109/TFUZZ.2016.2637369
  7. 7.
    Zhou, Q., Shi, P., Tian, Y., Wang, M.: Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans. Cybern. 45(10), 2119–2128 (2015)CrossRefGoogle Scholar
  8. 8.
    Niu, B., Karimi, Hamid R., Wang, H., Liu, Y.: Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method. IEEE Trans. Syst. Man Cybern. Syst. 47, 1371–1382 (2017)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–411 (2017)Google Scholar
  11. 11.
    Boulkroune, A.: A fuzzy adaptive control approach for nonlinear systems with unknown control gain sign. Neurocomputing 179, 318–325 (2015)CrossRefGoogle Scholar
  12. 12.
    Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, Y., Dong, H., Zhang, X., Yang, H.: Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 73, 246–252 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Meng, X., Zhao, S., Feng, T., Zhang, T.: Dynamics of a novel nonlinear stochastic sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017(5), 1–15 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Han, T., Ge, S., Lee, T.: Adaptive neural control for a class of switched nonlinear systems. Syst. Control Lett. 58(2), 109–118 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, F., Chen, B., Lin, C., Li, X.: Distributed adaptive neural control for stochastic nonlinear multi-agent systems. IEEE Trans. Cybern. 47(7), 1795–1803 (2017)CrossRefGoogle Scholar
  18. 18.
    Niu, B., Liu, Y., Zong, G., Han, Z., Fu, J.: Command filter-Based adaptive neural tracking controller design for uncertain switched nonlinear output-constrained systems. IEEE Trans. Cybern. (2017). doi: 10.1109/TCYB.2016.2647626
  19. 19.
    Chen, B., Liu, X., Liu, K., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Su, C., Stepanenko, Y., Svoboda, J., Leung, T.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 45(12), 2427–2432 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, H., Chen, B., Liu, K., Liu, X., Lin, C.: Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 947–958 (2014)CrossRefGoogle Scholar
  22. 22.
    Wang, F., Liu, Z., Zhang, Y., Chen, C.L.P.: Adaptive fuzzy control for a class of stochastic pure-feedback nonlinear systems with unknown hysteresis. IEEE Trans. Fuzzy Syst. 24(1), 140–152 (2016)CrossRefGoogle Scholar
  23. 23.
    Liu, Z., Yu, G., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2129–2140 (2014)CrossRefGoogle Scholar
  24. 24.
    Bhat, S., Bernstein, S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hong, Y.: Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46(4), 231–236 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. (2017). doi: 10.1109/TCYB.2017.2715980
  29. 29.
    Wang, F., Chen, B., Liu, X., Lin, C.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. (2017). doi: 10.1109/TFUZZ.2017.2717804
  30. 30.
    Liang, Y., Ma, R., Wang, M., Fu, J.: Global finite-time stabilisation of a class of switched nonlinear systems. Int. J. Syst. Sci. 46(16), 2897–904 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yang, Y., Hua, C., Guan, X.: Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system. IEEE Trans. Fuzzy Syst. 22(3), 631–641 (2014)CrossRefGoogle Scholar
  32. 32.
    Yu, J., Shi, P., Dong, W., Chen, B., Lin, C.: Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 640–645 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, L., Mendel, J.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)CrossRefGoogle Scholar
  34. 34.
    Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar
  35. 35.
    Qian, C., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ploycarpou, M., Ioannou, P.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Shandong University of Science and TechnologyQingdaoChina

Personalised recommendations