Skip to main content
Log in

Adaptive Controller Design for a Class of Uncertain Fractional-Order Nonlinear Systems: An Adaptive Fuzzy Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

An adaptive fuzzy controller is designed for uncertain fractional-order nonlinear systems in this paper. Fuzzy logic system is utilized to estimate an unknown nonlinear function. By using fractional-order Lyapunov stability criterion, an adaptive fuzzy controller, which is valid for both the Caputo fractional-order systems and the Riemann–Liouville fractional-order systems, is constructed. Fuzzy system parameters are updated by fractional-order differential equations online, and the boundedness of the parameters can be guaranteed. In stability analysis, quadratic Lyapunov functions are utilized, and some basic results which are useful in the stability analysis of fractional-order nonlinear systems are proposed. Finally, simulation results are presented to confirm our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. \(N=N_1\times N_2\times \cdots \times N_n\) rules defined as follows are also need to approximate the unknown function \(\hat{f}(x(t))\) (\(j\in J\)): Rule \(j\ \ (j=(F_1,F_2,\ldots , F_n))\): if x(t) is \(\left( F_1(t),F_2(t),\ldots , F_n(t)\right)\), then \(\hat{f}(x(t))\) is \(B^{j}(t)\).

References

  1. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  2. Boulkroune, A., Tadjine, M., Saad, M.M.: Fuzzy adaptive controller for mimo nonlinear systems with known and unknown control direction. Fuzzy Sets Syst. 161(6), 797–820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lin, T.-C., Kuo, C.-H.: H\(_\infty\) synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach. ISA Trans. 50(4), 548–556 (2011)

    Article  Google Scholar 

  5. Ahn, H.-S., Chen, Y.: Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44(11), 2985–2988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, R., Lu, Y., Chen, L.: Finite-time stability of fractional delayed neural networks. Neurocomputing 149, 700–707 (2015)

    Article  Google Scholar 

  7. Shen, J., Lam, J.: Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica 50(2), 547–551 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1), 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, H., Li, S.-G., Sun, Y.-G., Wang, H.-X.: Prescribed performance synchronization for fractional-order chaotic systems. Chin. Phys. B 24(9), 090505 (2015)

    Article  Google Scholar 

  10. Ding, Z., Shen, Y., Wang, L.: Global mittag-leffler synchronization of fractional-order neural networks with discontinuous activations. Neural Netw. 73, 77–85 (2016)

    Article  Google Scholar 

  11. Velmurugan, G., Rakkiyappan, R., Cao, J.: Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Netw. 73, 36–46 (2016)

    Article  MATH  Google Scholar 

  12. Liu, H., Li, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing 219, 422–430 (2017)

    Article  Google Scholar 

  13. Liu, H., Pan, Y., Li, S., Chen, Y.: Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control. Int. J. Mach. Learn. Cybern. (2017). doi:10.1007/s13042-017-0646-z

    Google Scholar 

  14. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2209–2217 (2017)

    Article  Google Scholar 

  15. Chen, Y., Ahn, H.-S., Podlubny, I.: Robust stability check of fractional order linear time invariant systems with interval uncertainties. Sig. Process. 86(10), 2611–2618 (2006)

    Article  MATH  Google Scholar 

  16. Lan, Y.-H., Huang, H.-X., Zhou, Y.: Observer-based robust control of \(\alpha\) (\(1\le \alpha \le 2\)) fractional-order uncertain systems: a linear matrix inequality approach. IET Control Theory Appl. 6(2), 229–234 (2012)

    Article  MathSciNet  Google Scholar 

  17. Busłowicz, M., Ruszewski, A.: Robust stability of a class of uncertain fractional order linear systems with pure delay. Arch. Control Sci. 25(2), 177–187 (2015)

    MathSciNet  Google Scholar 

  18. Ammour, A.S., Djennoune, S., Aggoune, W., Bettayeb, M.: Stabilization of fractional-order linear systems with state and input delay. Asian J. Control 17(5), 1946–1954 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, Y.-J., Wu, B.-W., Wang, Y.-E.: Finite-time stability and finite-time boundedness of fractional order linear systems. Neurocomputing 173, 2076–2082 (2016)

    Article  Google Scholar 

  20. Lim, Y.-H., Oh, K.-K., Ahn, H.-S.: Stability and stabilization of fractional-order linear systems subject to input saturation. IEEE Trans. Autom. Control 58(4), 1062–1067 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, Y., Lu, J., Chen, W.: Robust stability and stabilization of fractional order linear systems with positive real uncertainty. ISA Trans. 53(2), 199–209 (2014)

    Article  Google Scholar 

  22. Li, C., Wang, J.: Robust stability and stabilization of fractional order interval systems with coupling relationships: the \(0< \alpha < 1\) case. J. Franklin Inst. 349(7), 2406–2419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tong, S.-C., He, X.-L., Zhang, H.-G.: A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 17(5), 1059–1069 (2009)

    Article  Google Scholar 

  24. Boulkroune, A., MSaad, M.: A fuzzy adaptive variable-structure control scheme for uncertain chaotic mimo systems with sector nonlinearities and dead-zones. Expert Syst. Appl. 38(12), 14744–14750 (2011)

    Article  Google Scholar 

  25. Tong, S., Li, Y.: Adaptive fuzzy output feedback control of mimo nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)

    Article  Google Scholar 

  26. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2012)

    Article  Google Scholar 

  27. Pan, Y., Er, M.J.: Enhanced adaptive fuzzy control with optimal approximation error convergence. IEEE Trans. Fuzzy Syst. 21(6), 1123–1132 (2013)

    Article  Google Scholar 

  28. Liu, H., Yu, H.-J., Xiang, W.: Adaptive fuzzy nonlinear inversion-based control for uncertain chaotic systems. Chin. Phys. B 21(12), 120505 (2012)

    Article  Google Scholar 

  29. Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–2308 (2015)

    Article  Google Scholar 

  30. Liu, Y.-J., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016)

    Article  Google Scholar 

  31. Liu, Y.-J., Tong, S., Li, D.-J., Gao, Y.: Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Trans. Fuzzy Syst. 24(5), 1147–1158 (2016)

    Article  Google Scholar 

  32. Liu, H., Li, S.-G., Wang, H.-X., Li, G.-J.: Adaptive fuzzy synchronization for a class of fractional-order neural networks. Chin. Phys. B 26(3), 030504 (2017)

    Article  Google Scholar 

  33. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain mimo nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Article  Google Scholar 

  34. Li, Y., Tong, S.: Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 47(4), 1007–1016 (2017)

    Article  Google Scholar 

  35. Li, H., Wu, C., Wu, L., Lam, H.-K., Gao, Y.: Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46(3), 668–678 (2016)

    Article  Google Scholar 

  36. Li, H., Wu, C., Yin, S., Lam, H.-K.: Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. 24(5), 1233–1245 (2016)

    Article  Google Scholar 

  37. Wu, T.-S., Karkoub, M., Chen, H.-S., Yu, W.-S., Her, M.-G.: Robust tracking observer-based adaptive fuzzy control design for uncertain nonlinear mimo systems with time delayed states. Inf. Sci. 290, 86–105 (2015)

    Article  MATH  Google Scholar 

  38. Li, Y., Tong, S.: Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inf. Sci. 292, 125–142 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pan, Y., Zhou, Y., Sun, T., Er, M.J.: Composite adaptive fuzzy h\(_\infty\) tracking control of uncertain nonlinear systems. Neurocomputing 99, 15–24 (2013)

    Article  Google Scholar 

  40. Boulkroune, A., Bouzeriba, A., Hamel, S., Bouden, T.: A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems. Nonlinear Dyn. 78(1), 433–447 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chen, L., Chai, Y., Wu, R., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with caputo derivative. IEEE Trans. Circuits Syst. II Express Briefs 59(9), 602–606 (2012)

    Article  Google Scholar 

  42. Chang, W.-J., Hsu, F.-L.: Sliding mode fuzzy control for takagi-sugeno fuzzy systems with bilinear consequent part subject to multiple constraints. Inf. Sci. 327, 258–271 (2016)

    Article  MathSciNet  Google Scholar 

  43. Pan, Y., Er, M.J., Huang, D., Wang, Q.: Adaptive fuzzy control with guaranteed convergence of optimal approximation error. IEEE Trans. Fuzzy Syst. 19(5), 807–818 (2011)

    Article  Google Scholar 

  44. Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2017)

    Google Scholar 

  45. Liu, Y., Park, J.H., Guo, B.-Z., Shu, Y.: Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control. IEEE Trans. Fuzzy Syst. (2017)

  46. Wang, L.-X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall Inc., Englewood Cliffs (1994)

    Google Scholar 

  47. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic press, London (1998)

    MATH  Google Scholar 

  48. Liu, H., Li, S., Wang, H., Huo, Y., Luo, J.: Adaptive synchronization for a class of uncertain fractional-order neural networks. Entropy 17(10), 7185–7200 (2015)

    Article  MathSciNet  Google Scholar 

  49. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order differential systems. Comput. Math. Appl. 64(10), 3117–3140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the anonymous reviewers’ valuable comments, which improved the presentation and quality of this paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11401243, 61403157), the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant Nos. KJ2015A256, KJ2016A665 and KJ2016A666), the Foundation for Distinguished Young Talents in Higher Education of Anhui Province of China (Grant No. GXYQZD2016257), the Special Fund for Scientific and Technological Bases and Talents of Guangxi (Grant No. 2016AD05050) and the Special Fund for Bagui Scholars of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Li, S., Li, G. et al. Adaptive Controller Design for a Class of Uncertain Fractional-Order Nonlinear Systems: An Adaptive Fuzzy Approach. Int. J. Fuzzy Syst. 20, 366–379 (2018). https://doi.org/10.1007/s40815-017-0371-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0371-5

Keywords

Navigation