Advertisement

International Journal of Fuzzy Systems

, Volume 20, Issue 3, pp 861–876 | Cite as

Models and Algorithm for the Orienteering Problem in a Fuzzy Environment

  • Yaodong NiEmail author
  • Yi Chen
  • Hua Ke
  • Dan A. Ralescu
Article

Abstract

The orienteering problem is a classical decision-making problem that can model many applications in logistics, tourism , and several other fields. In the orienteering problem, a graph is given, in which each vertex is associated with a score and the travel time along each edge is provided. The goal of this problem is to find a path that maximizes the sum of the collected scores, such that the total travel time along the path is below a given time limit. In the real world, the scores and the travel time may be uncertain, especially when the historical data are not sufficient. In this paper, we study the orienteering problem in a fuzzy environment and represent the scores and the travel time as fuzzy variables. Based on credibility theory, three fuzzy programming models under different decision criteria are proposed. For cases where the fuzzy variables are of some specific types, crisp equivalents of the models are constructed. In order to solve the proposed models, we design a hybrid intelligent algorithm integrating fuzzy simulation with genetic algorithm. A series of numerical experiments are performed to show the effectiveness and robustness of our hybrid intelligent algorithm.

Keywords

Fuzzy programming Orienteering problem Credibility theory Fuzzy simulation Genetic algorithm 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 71471038, 71371141) and Program for Huiyuan Distinguished Young Scholars, UIBE.

References

  1. 1.
    Chao, I., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. 34(3), 307–318 (1987)CrossRefzbMATHGoogle Scholar
  3. 3.
    Souffriau, W., Vansteenwegen, P., Vertommen, J., Berghe, G.V., Van Oudheusden, D.: A personalized tourist trip design algorithm for mobile tourist guides. Appl. Artif. Intell. 22(10), 964–985 (2008)CrossRefGoogle Scholar
  4. 4.
    Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984)CrossRefGoogle Scholar
  5. 5.
    Hayes, M., Norman., J.M.: Dynamic programming in orienteering: route choice and the siting of controls. J. Oper. Res. Soc. 35(9), 791–796 (1984)CrossRefGoogle Scholar
  6. 6.
    Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Appl. Math. 26(2), 193–207 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering problems. 4OR 5(3), 211–230 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jorge Riera-Ledesma and Juan Jose Salazar-Gonzalez: Solving the team orienteering arc routing problem with a column generation approach. Eur. J. Oper. Res. 262(1), 14–27 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golden, B.L., Qiwen, W., Liu, L.: A multifaceted heuristic for the orienteering problem. Nav. Res. Logist. (NRL) 35(3), 359–366 (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chao, I., Golden, B.L., Wasil, E.A., et al.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Tasgetiren, F.: A genetic algorithm with an adaptive penalty function for the orienteering problem. J. Econ. Soc. Res. 4(2), 1–26 (2002)Google Scholar
  12. 12.
    Wang, X., Golden, B.L., Edward A, W.: Using a genetic algorithm to solve the generalized orienteering problem. In: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Sevkli, Z., Sevilgen, F.E.: Variable neighborhood search for the orienteering problem. In: Computer and Information Sciences—ISCIS 2006, pp. 134–143. Springer (2006)Google Scholar
  14. 14.
    Palomo-Martinez, P.J., Salazar-Aguilar, M.A., Laporte, G.: A hybrid variable neighborhood search for the orienteering problem with mandatory visits and exclusionary constraints. Comput. Oper. Res. 78, 408–419 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bouly, H., Dang, D.-C., Moukrim, A:. A memetic algorithm for the team orienteering problem. 4OR, 8(1), 49–70 (2010)Google Scholar
  16. 16.
    Matl, P., Nolz, P.C., Ritzinger, U., Ruthmair, M., Tricoire, F.: Bi-objective orienteering for personal activity scheduling. Comput. Oper. Res. 82, 69–82 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gedik, R., Kirac, E., Milburn, A.B., Rainwater, C.: A constraint programming approach for the team orienteering problem with time windows. Comput. Ind. Eng. 107, 178–195 (2017)CrossRefGoogle Scholar
  18. 18.
    Mei, Y., Salim, F.D., Li, X.: Efficient meta-heuristics for the multi-objective time-dependent orienteering problem. Eur. J. Oper. Res. 254, 443–457 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Keshtkaran, M., Ziarati, K., Bettinelli, A., Vigo, D.: Enhanced exact solution methods for the team orienteering problem. Int. J. Prod. Res. 54, 591–601 (2016)CrossRefGoogle Scholar
  20. 20.
    Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Vathis, N.: Heuristics for the time dependent team orienteering problem: application to tourist route planning. Comput. Oper. Res. 62, 36–50 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ilhan, T., Iravani, S.M.R., Daskin, M.S.: The orienteering problem with stochastic profits. IIE Trans. 40(4), 406–421 (2008)CrossRefGoogle Scholar
  22. 22.
    Tang, H., Miller-Hooks, E.: Algorithms for a stochastic selective travelling salesperson problem. J. Oper. Res. Soc. 56(4), 439–452 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    Campbell, A.M., Gendreau, M.: The orienteering problem with stochastic travel and service times. Ann. Oper. Res. 186(1), 61–81 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefzbMATHGoogle Scholar
  25. 25.
    Nahmias, S.: Fuzzy variables. Fuzzy Sets Syst. 1, 97–110 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, B., Liu, Y.-K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)CrossRefGoogle Scholar
  28. 28.
    Liu, B.: A survey of credibility theory. Fuzzy Optim. Decis. Mak. 5(4), 387–408 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zheng, Y., Liu, B.: Fuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithm. Appl. Math. Comput. 176(2), 673–683 (2006)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ni, Y.: Fuzzy minimum weight edge covering problem. Appl. Math. Model. 32(7), 1327–1337 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Qin, Z., Ji, X.: Logistics network design for product recovery in fuzzy environment. Eur. J. Oper. Res. 202(2), 479–490 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    Barak, S., Abessi, M., Modarres, M.: Fuzzy turnover rate chance constraints portfolio model. Eur. J. Oper. Res. 228(1), 141–147 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yahia Zare Mehrjerdi and Ali Nadizadeh: Using greedy clustering method to solve capacitated location-routing problem with fuzzy demands. Eur. J. Oper. Res. 229(1), 75–84 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ni, Y.: Edge covering problem under hybrid uncertain environments. Appl. Math. Comput. 219(11), 6044–6052 (2013)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Ali Nadizadeh and Hasan Hosseini Nasab: Solving the dynamic capacitated location-routing problem with fuzzy demands by hybrid heuristic algorithm. Eur. J. Oper. Res. 238(2), 458–470 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ni, Y., Zhao, Z.: Two-agent scheduling problem under fuzzy environment. J. Intell. Manuf. 28(3), 739–748 (2017)CrossRefGoogle Scholar
  37. 37.
    Liu, B.: Uncertainty theory: an introduction to its axiomatic foundations, volume 154. Springer (2004)Google Scholar
  38. 38.
    Liu, Y.-K., Gao, J.: The independence of fuzzy variables in credibility theory and its applications. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 12(5), 1–20 (2007)CrossRefGoogle Scholar
  39. 39.
    Liu, Y.-K., Liu, B.: Expected value operator of random fuzzy variable and random fuzzy expected value models. Int. J. Uncert. Fuzziness Knowl.-Based Syst. 11(2), 195–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Information Technology and ManagementUniversity of International Business and EconomicsBeijingChina
  2. 2.Division of Information Technology and Operations Management, Nanyang Business SchoolNanyang Technological UniversitySingaporeSingapore
  3. 3.School of Economics and ManagementTongji UniversityShanghaiChina
  4. 4.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations