International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1333–1343 | Cite as

Observer-Based Output-Feedback Control Design for a Class of Nonlinear Switched T–S Fuzzy Systems with Actuator Saturation and Time Delay



A state observer-based output-feedback controller is proposed for a class of nonlinear switched T–S fuzzy systems with actuator saturation and time delay in this paper. The proposed control scheme is developed by applying the parallel distributed compensation technique. The nonlinear switched fuzzy systems consist of several switched modes, and each switched mode is linear system. Therefore, by using Lyapunov function theory and average dwell time approach, the sufficient stability conditions are given. The effectiveness and feasibility of the proposed scheme are verified through numerical and practical examples.


Switched T–S fuzzy system Observer-based output-feedback control design Actuator saturation Linear matrix inequalities (LMIs) 



This work was supported by the National Natural Science Foundation of China (No. 61374113).


  1. 1.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Fuzzy Syst. 15(1), 116–132 (1985)MATHGoogle Scholar
  2. 2.
    Xie, X.P., Liu, Z.W., Zhu, X.L.: An efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time T–S fuzzy systems. Fuzzy Sets Syst. 263, 71–81 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chun, H.F., Liu, Y.S., Kau, S.W., Lin, H., Lee, C.H.: A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(3), 386 (2006)CrossRefGoogle Scholar
  4. 4.
    Yang, Y., Fan, X.X., Zhang, T.P.: Anti-disturbance tracking control for systems with nonlinear disturbances using T–S fuzzy modeling. Neurocomputing 171, 1027–1037 (2016)CrossRefGoogle Scholar
  5. 5.
    Jian, J.G., Jiang, W.L.: Lagrange exponential stability for fuzzy Cohen–Grossberg neural networks with time-delays. Fuzzy Sets Syst. 277, 65–80 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, B., Liu, X.P., Lin, C., Liu, K.: Robust H control of Takagi–Sugeno fuzzy systems with state and input time delays. Fuzzy Sets Syst. 160(4), 403–422 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, C.W., Lin, C.L., Tsai, C.H., Chen, C.Y.: A novel delay-dependent criterion for time-delay T–S fuzzy systems using fuzzy Lyapunov method. Int. J. Artif. Intell. Tools 16(3), 545–552 (2007)CrossRefGoogle Scholar
  8. 8.
    Yang, Y., Zheng, W.X., Sun, C.Y., Guo, L.: DOB fuzzy controller design for non-Gaussian stochastic distribution systems using two-step fuzzy identification. IEEE Trans. Fuzzy Syst. 24(2), 401–418 (2016)CrossRefGoogle Scholar
  9. 9.
    Chen, C.W.: Modeling, control, and stability analysis for time-delay TLP systems using the fuzzy Lyapunov method. Neural Comput. Appl. 9, 1433–3508 (2011)Google Scholar
  10. 10.
    Lai, G.Y., Liu, Z., Zhang, Y., Chen, C.L.P.: Adaptive fuzzy quantized control of time-delayed nonlinear systems with communication constraint. Fuzzy Sets Syst. (2016). doi: 10.1016/j.fss.2016.05.012 MATHGoogle Scholar
  11. 11.
    Chen, P., Wen, L.Y., Yang, J.Q.: On delay-dependent robust stability criteria for uncertain T–S fuzzy systems with interval time-varying delay. Int. J. Fuzzy Syst. 13(1), 1 (2011)MathSciNetGoogle Scholar
  12. 12.
    Wu, L.G., Su, X.J., Shi, P., Qiu, J.B.: A new approach to stability analysis and stabilization of discrete-time T–S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern. B 41(1), 273–286 (2011)CrossRefGoogle Scholar
  13. 13.
    Chen, B., Liu, X.P., Tong, S.C., Lin, C.: Observe-based stabilization of T–S fuzzy systems with input delay. IEEE Trans. Fuzzy Syst. 16(3), 652–663 (2008)CrossRefGoogle Scholar
  14. 14.
    Yu, W.S., Karkoub, M., Wu, T.S., Her, M.G.: Delayed output feedback control for nonlinear systems with two-layer interval fuzzy observers. IEEE Trans. Fuzzy Syst. 22(3), 611–630 (2014)CrossRefGoogle Scholar
  15. 15.
    Chiou, J.S., Wang, C.J., Cheng, C.M., Wang, C.C.: Analysis and synthesis of switched nonlinear systems using the T–S fuzzy model. Appl. Math. Model. 34(6), 1467–1481 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Wang, T.C., Tong, S.C.: H control design for discrete-time switched fuzzy systems. Neurocomputing 151, 184–188 (2007)Google Scholar
  17. 17.
    Long, L.J., Zhao, J.: Adaptive fuzzy output-feedback dynamic surface control of MIMO switched nonlinear systems with unknown gain signs. Fuzzy Sets Syst. (2015). doi: 10.1016/j.fss.2015.12.006 Google Scholar
  18. 18.
    Chiou, J.S.: Stability analysis for a class of switched large-scale time-delay systems via time-switched method. IEE Proc. Control Theory Appl. 153(6), 684–688 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chang, Y.H., Yang, C.Y., Chan, W.S., Lin, H.W., Chang, C.W.: Adaptive fuzzy sliding-mode formation controller design for multi-robot dynamic systems. Int. J. Fuzzy Syst. 16(1), 121 (2014)Google Scholar
  20. 20.
    Wu, L.G., Wang, Z.D.: Guaranteed cost control of switched systems with neutral delay via dynamic output feedback. Int. J. Syst. Sci. 40(7), 717–728 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yang, H., Jiang, B., Cocquempot, V.: A fault tolerant control framework for periodic switched non-linear systems. Int. J. Control 46(4), 117–129 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, Y.M., Tong, S.C.: Fuzzy adaptive backstepping decentralized control for switched nonlinear large-scale systems with switching jumps. Int. J. Fuzzy Syst. 17(1), 12–21 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lian, J., Mu, C.W., Shi, P.: Asynchronous H filtering for switched stochastic systems with time-varying delay. Inf. Sci. 224(1), 200–212 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Dong, J.X., Yang, G.H.: Dynamic output feedback image control synthesis for discrete-time T–S fuzzy systems via switching fuzzy controllers. Fuzzy Sets Syst. 160(4), 482–499 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Tian, E., Peng, C.: Delay-dependent stability analysis and synthesis of uncertain T–S fuzzy systems with time-varying delay. Fuzzy Sets Syst. 157(4), 544–559 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wang, M., Zhao, J., Dimirovski, G.M.: Dynamic output feedback robust H control of uncertain switched nonlinear systems. Int. J. Control Autom. Syst. 9(1), 1–8 (2011)CrossRefGoogle Scholar
  27. 27.
    Yang, W., Tong, S.C.: Robust stabilization of switched fuzzy systems with actuator dead zone. Neurocomputing 173, 1028–1033 (2016)CrossRefGoogle Scholar
  28. 28.
    He, X., Zhao, J.: Switching stabilization and H performance of a class of discrete switched LPV system with unstable. Nonlinear Dyn. 76(2), 1–9 (2014)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Yang, W., Tong, S.C.: Output feedback robust stabilization of switched fuzzy systems with time delay and actuator saturation. Neurocomputing 164, 173–181 (2015)CrossRefGoogle Scholar
  30. 30.
    Zheng, Q.X., Zhang, H.B.: Asynchronous H fuzzy control for a class of switched nonlinear systems via switching fuzzy Lyapunov function approach. Neurocomputing 182, 178–186 (2016)CrossRefGoogle Scholar
  31. 31.
    Cao, Y.Y., Lin, Z., Ward, D.G.: Anti-windup design of output tracking systems subject to actuator saturation and constant disturbances. Automatica 40(7), 1221–1228 (2004)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Zhai, D., An, L.W., Li, J.H., Zhang, Q.L.: Adaptive fuzzy fault-tolerant control with guaranteed tracking performance for nonlinear strict-feedback systems. Fuzzy Sets Syst. 302, 82–100 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Gao, S.G., Ning, B., Dong, H.R.: Fuzzy dynamic surface control for uncertain nonlinear systems under input saturation via truncated adaptation approach. Fuzzy Sets Syst. 290, 100–117 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Su, X., Shi, P., Wu, L., Song, Y.: A novel approach to filter design for T–S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. 20(6), 1114–1129 (2012)CrossRefGoogle Scholar
  35. 35.
    Tsai, S.H., Jian, S.A.: Robust H control for Takagi–Sugeno fuzzy systems with time-varying delays in state and input. Appl. Mech. Mater. 764–765, 624–628 (2015)CrossRefGoogle Scholar
  36. 36.
    Cao, Y.Y., Lin, Z.L.: Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003)CrossRefGoogle Scholar
  37. 37.
    Zhang, L.X., Gao, H.: Asynchronously switched control of switched linear systems with average dwell time. Automatica 46(5), 953–958 (2010)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)CrossRefGoogle Scholar
  39. 39.
    Cao, Y.Y., Frank, P.M.: Analysis and Synthesis of nonlinear time delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)CrossRefGoogle Scholar
  40. 40.
    Li, L.L., Zhao, J., Dimirovski, G.M.: Observer-based reliable exponential stabilization and H control for switched systems with faulty actuators: an average dwell. Nonlinear Anal. Hybrid Syst. 5(3), 479–491 (2011)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Liu, X.D., Zhang, Q.L.: New approaches to H controller designs based on fuzzy observer for T–S fuzzy systems via LMI. Automatica 39(9), 1571–1582 (2003)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Mhaskar, P., Farra, N.H.E., Christofides, P.D.: Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Trans. Autom. Control 50(11), 1670–1680 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsLiaoning University of TechnologyJinzhouChina

Personalised recommendations