Advertisement

International Journal of Fuzzy Systems

, Volume 20, Issue 3, pp 835–846 | Cite as

Design and Application of Interval Type-2 TSK Fuzzy Logic System Based on QPSO Algorithm

  • Qiu-feng Fan
  • Tao WangEmail author
  • Yang Chen
  • Zhi-feng Zhang
Article

Abstract

Studies on interval type-2 TSK fuzzy logic system is a hot topic in the current academic area. Parameter identification is very important for system design. Commonly used parameter identification methods are the least-square algorithm, BP algorithm, etc., few scholars use QPSO algorithm for parameter identification. In this paper, we propose a design of interval type-2 TSK fuzzy logic system based on quantum behaved particle swarm optimization (QPSO) intelligent algorithm. Firstly, by combining the A1–C1, A2–C0, A2–C1 interval type-2 TSK fuzzy logic system with neural network, the fuzzy neural network system is designed. Then, the QPSO intelligent algorithm was used to tune the fuzzy neural network system parameters, and the designed system model is applied to predict the Nasdaq Composite Index and International Gold Prices. Both QPSO algorithm and BP algorithm have been used to train the system model. By comparing QPSO algorithm and BP algorithm, the performance index and simulation results illustrated the proposed model is effective and feasible, which can achieve a better performance. Finally, compare the performance of the four fuzzy logic systems, it can be seen the effect of A2–C1 fuzzy logic system is better than that of the other three fuzzy logic systems.

Keywords

Fuzzy logic system Neural network QPSO algorithm BP algorithm Nasdaq Composite Index International Gold Prices 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61374113), and by Liaoning Province College Basic Scientific Research Business Funding Project (JL201615410).

References

  1. 1.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-II. Inf. Sci. 8(75), 301–357 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type-2. Inf. Control 31(4), 312–340 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Mizumoto, M., Tanaka, K.: Fuzzy sets of type-2 under algebraic product and algebraic sum. Fuzzy Sets Syst. 5(3), 277–290 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122(2), 327–348 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mendel, J.M., John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)CrossRefGoogle Scholar
  6. 6.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 387–403 (1985)zbMATHGoogle Scholar
  7. 7.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hagras, H.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)CrossRefGoogle Scholar
  9. 9.
    Zeng, J., Liu, Z.Q.: Type-2 fuzzy hidden markov models and their application to speech recognition. IEEE Trans. Fuzzy Syst. 14(3), 454–467 (2006)CrossRefGoogle Scholar
  10. 10.
    Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120(1–4), 89–111 (2007)zbMATHGoogle Scholar
  11. 11.
    Karnik, N.N., Mendel, J.M.: Introduction to type-2 fuzzy logic systems. IEEE Word Congr. IEEE Int. Conf. Fuzzy Syst. 2(2), 915–920 (1998)Google Scholar
  12. 12.
    Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)CrossRefGoogle Scholar
  13. 13.
    Castillo, O., Melin, P.: A new approach for plant monitoring using type-2 fuzzy logic and fractal theory. Int. J. Gen. Syst. 33(2), 305–319 (2015)zbMATHGoogle Scholar
  14. 14.
    Castillo, O., Melin, P.: Intelligent systems with interval type-2 fuzzy logic. Int. J. Innov. Comput. Inf. Control 4(4), 771–783 (2008)Google Scholar
  15. 15.
    Khosravi, A., Nahavandi, S.: Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction. IEEE Trans. Ind. Inf. 10(2), 1055–1063 (2014)CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Wang, D.Z., Tong, S.C.: Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: With the combination of BP algorithms and KM algorithms. Neurocomputing 174(part b), 1133–1146 (2016)CrossRefGoogle Scholar
  17. 17.
    Zarandi, M.H.F., Rezaee, B., Turksen, I.B.: A type-2 fuzzy rule-based expert system for stock price analysis. Expert Syst. Appl. 36(1), 139–154 (2009)CrossRefGoogle Scholar
  18. 18.
    Hassan, S., Khosravi, A., Jaafar, J., et al.: A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting. Int. J. Electr. Power Energy Syst. 82, 1–10 (2016)CrossRefGoogle Scholar
  19. 19.
    Banakar, A., Azeem, M.F.: Parameter identification of TSK neuro-fuzzy models. Fuzzy Sets Syst. 179(1), 62–82 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ahn, C.K.: Some new results on stability of Takagi–Sugeno fuzzy hopfield neural networks. Fuzzy Sets Syst. 179(1), 100–111 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Berrios, R., Nunez, F., Cipriano, A.: Fault tolerant measurement system based on Takagi–Sugeno fuzzy models for a gas turbine in a combined cycle power plant. Fuzzy Sets Syst. 174(1), 114–130 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gao, Q., Feng, G., Wang, Y., Qiu, J.: Universal fuzzy controllers based on generalized T–S fuzzy models. Fuzzy Sets Syst. 201(3), 55–70 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, T., Han, C.Y., Jiang, C.J.: Design and simulation of main steam temperature controller based on interval type-2 fuzzy logic systems. ICIC Express Lett. B: Appl. Int. J. Res. Surv. 4(5), 1359–1366 (2013)Google Scholar
  24. 24.
    Wang, T., Han, C.Y., Lan, J.: Application of interval type-2 fuzzy logic system in stock forecasting. ICIC Express Lett. Int. J. Res. Surv. 8(11), 3015–3020 (2014)Google Scholar
  25. 25.
    Wang, T., Han, C.Y., Jin, X.L.: Design of interval type-2 fuzzy neural network system and application. ICIC Express Lett. B: Appl. Int. J. Res. Surv. 6(4), 1041–1048 (2015)Google Scholar
  26. 26.
    Sabahi, K., Ghaemi, S., Pezeshki, S.: Gain scheduling technique using MIMO type-2 fuzzy logic system for LFC in restructure power system. Int. J. Fuzzy Syst., 1–15 (2016). doi: 10.1007/s40815-016-0240-7
  27. 27.
    Wang, L., Liu, Z., Zhang, Y., Chen, C.L.P., Chen, X.: Type-2 fuzzy logic controller using SRUKF-based state estimations for biped walking robots. Int. J. Fuzzy Syst. 15(4), 423–434 (2013)MathSciNetGoogle Scholar
  28. 28.
    Lee, C.H., Hsueh, H.Y.: Observer-based adaptive control for a class of nonlinear non-affine systems using recurrent-type fuzzy logic systems. Int. J. Fuzzy Syst. 15(1), 55–65 (2013)MathSciNetGoogle Scholar
  29. 29.
    Ahammed, A.K.I.: Profoundly robust controlling strategy for uncertain nonlinear mimo system using T–S fuzzy system. Int. J. Fuzzy Syst., 1–14 (2016). doi: 10.1007/s40815-016-0225-6
  30. 30.
    Khosravi, A., Nahavandi, S., Creighton, D., Srinivasan, D.: Interval type-2 fuzzy logic systems for load forecasting: a comparative study. IEEE Trans. Power Syst. 27(3), 1274–1282 (2012)CrossRefGoogle Scholar
  31. 31.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw., 1942–1948 (1995)Google Scholar
  32. 32.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  33. 33.
    Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. IEEE Congr. Evolut. Comput. 70(3), 1571–1580 (2004)Google Scholar
  34. 34.
    Sun, J., Liu, W.B.: A global search strategy of quantum-behaved particle swarm optimization. IEEE Conf. Cybern. Intell. Syst. 1(11), 111–116 (2005)Google Scholar
  35. 35.
    Wei, F., Jun, S., Ping, X.Z., Xu, W.B.: Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter. Acta Phys. Sin. 59(6), 3686–3694 (2010)zbMATHGoogle Scholar
  36. 36.
    Lian, G.Y., Huang, K.L., Chen, J.H., Gao, F.Q.: Training algorithm for radial basis function neural network based on quantum-behaved particle swarm optimization. Int. J. Comput. Math. 87(3), 629–641 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhai, D.Y., Hao, M.S., Mendel, J.M.: A non-singleton interval type-2 fuzzy logic system for universal image noise removal using quantum-behaved particle swarm optimization. IEEE Int. Conf. Fuzzy Syst., 957–964 (2011)Google Scholar
  38. 38.
    Min, P.Y., Hong, D.Y., Zhu, Z.Q.: Chaotic time series prediction based on QPSO–FNN. Comput. Appl. Softw. 30(8), 91–94 (2013)Google Scholar
  39. 39.
    Wei, W.: A QPSO–RBF neural network based traffic flow prediction method. J. Taiyuan Norm. Univ. (Nat. Sci. Ed.) 14(2), 28–32 (2015)Google Scholar
  40. 40.
    Shu, Z.Z., Ming, B.Y., Long, W.P., Peng, Z.G., Liang, Z.J.: Short-term power load forecasting model based on QPSO–RBFNN. J. Nanjing Univ. Sci. Technol. 40(1), 97–101 (2016)Google Scholar
  41. 41.
    Liu, M., Zhang, J.Y., Wang, Y.Z.: Research on a new hybrid optimization algorithm based on QPSO and FNN. Int. J. Smart Home 10(6), 175–186 (2016)CrossRefGoogle Scholar
  42. 42.
    Xu, L.B., Hong, Y.J.: Document classification based on improved QPSO and RBF neural networks. Comput. Syst. Appl. 25(7), 264–267 (2016)Google Scholar
  43. 43.
    Mendel, J.M.: General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014)CrossRefGoogle Scholar
  44. 44.
    Wong, C.C., Wang, H.Y., Li, S.A.: PSO-based motion fuzzy controller design for mobile robots. Int. J. Fuzzy Syst. 10(1), 24–32 (2008)MathSciNetGoogle Scholar
  45. 45.
    Sambariya, D.K., Prasad, R.: Optimal tuning of fuzzy logic power system stabilizer using harmony search algorithm. Int. J. Fuzzy Syst. 17(3), 457–470 (2015)CrossRefGoogle Scholar
  46. 46.
    Mendel, J.M.: Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qiu-feng Fan
    • 1
  • Tao Wang
    • 1
    Email author
  • Yang Chen
    • 1
  • Zhi-feng Zhang
    • 1
  1. 1.College of ScienceLiaoning University of TechnologyJinzhouChina

Personalised recommendations