Skip to main content

Advertisement

Log in

Fuzzy PI Control of Symmetrical and Asymmetrical Multilevel Current Source Inverter

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Multilevel inverters are most popular in power converter applications due to reduced dv/dt, di/dt stress upon the switches and reduced harmonics. This paper suggests a circuit configuration of multilevel current source inverter with single-rating inductor topology. The proposed nine-level current source inverter has been tested under symmetrical and asymmetrical modes of operation for different loads, and their operations are compared using PI and fuzzy PI controllers with multicarrier PWM strategy. MATLAB/Simulink simulation has been carried out for the proposed inverter to obtain its performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

VSI:

Voltage source inverter

CSI:

Current source inverter

MVSI:

Multilevel voltage source inverter

MCSI:

Multilevel current source inverter

PWM:

Pulse width modulation

ASD:

Adjustable speed drives

PID:

Proportional–integral–derivative

POD:

Phase opposition disposition

References

  1. Li, Z., Wang, P., Li, P., Gao, F.: A novel single-phase five-level inverter with coupled inductors. IEEE Trans. Power Electron. 27(6), 2716–2725 (2012)

    Article  Google Scholar 

  2. Banaei, M.R., Dehghanzadeh, A.R., Salary, E., Khounjahan, H.: Z-source-based multilevel inverter with reduction of switches. IET Power Electron. 5(3), 385–392 (2012)

    Article  Google Scholar 

  3. Rodriguez, J., Lai, J.S., Peng, F.Z.: Multilevel inverter: a survey of topologies, controls, and application. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  4. Carrara, G., Gardella, S., Marchesoni, M., Salutari, R., Sciutto, G.: A new multilevel PWM method: a theoretical analysis. IEEE Trans. Ind. Electron. 7(3), 497–505 (1992)

    Google Scholar 

  5. Rodriguez, J., Correa, P., Moran, L.: A vector control technique for medium voltage multilevel inverters. IEEE Trans. Ind. Electron. 49(4), 882–888 (2002)

    Article  Google Scholar 

  6. Barbosa, P.G., Braga, H.A.C., Teixeira, E.C.: Boost current multilevel inverter and its application on single phase grid connected photovoltaic system. IEEE Trans. Power Electron. 21(4), 1116–1124 (2006)

    Article  Google Scholar 

  7. Xu, D., Wu, B.: Multi-level current source inverters with phase-shifted trapezoidal PWM. In: Proceedings of 36th IEEE Power Electronics Specialists Conference, pp. 2540–2546 (2005)

  8. Wu, Bin.: High Power Conductors and AC Drives. Willey, New York (2005)

    Google Scholar 

  9. Phillips, K.P.: Current source converter for AC motor drives. IEEE Trans. Ind. Appl. 8(6), 679–683 (1972)

    Article  Google Scholar 

  10. Espelage, P., Nowak, J.M., Walker, L.H.: Symmetrical GTO current source inverter for wide speed range control of 2300 to 4160 Volts, 350 to 7000 HP induction motors. In: IEEE IAS Annual Meeting on Conference Record, pp. 302–307 (1988)

  11. Blaabjerg, F., Jaeger, U., Munk-Nielsen, S.: Power losses in PWM-VSI inverter using NPT or PT-IGBT devices. IEEE Trans. Power Electron. 10(3), 358–367 (1995)

    Article  Google Scholar 

  12. Rashid, M.H.: Handbook of Power Electronics, vol. 12, pp. 599–627. Academic, New York (2001)

    Google Scholar 

  13. Kwak, S., Toliyat, H.: Current-source-rectifier topologies for supply sinusoidal current: theoretical studies and analyses. IEEE Trans. Ind. Electron. 53(3), 78–87 (2006)

    Google Scholar 

  14. Espinoza, J., Joós, G.: DSP based space vector PWM pattern generators for current source converters. Can. J. Electr. Comput. Eng. 22(4), 155–161 (1997)

    Article  Google Scholar 

  15. Fratta, A., Scapiano, F.: Modeling inverter losses for circuit simulation. In: Proceedings of 35th Annual IEEE Power Electronics Specialists Conference, pp. 4479–4485 (2004)

  16. Matheson, E., Von Jouanne, A., Wallace, A.: Evaluation of inverter and cable losses in adjustable speed drive applications with long motor leads. In: Proceedings of IEDM, pp. 159–161 (1999)

  17. Espinoza, J., Joos, G.: Current source converter on-line pattern generator switching frequency minimization. IEEE Trans. Ind. Electron. 44(2), 198–206 (1997)

    Article  Google Scholar 

  18. Espinoza, J., Joos, G.: State variable decoupling and power flow control in PWM current-source rectifiers. IEEE Trans. Ind. Electron. 45(1), 78–87 (1998)

    Article  Google Scholar 

  19. Rodríguez, J., Morán, L., Pontt, J., Osorio, R., Kouro, S.: Modeling and analysis of common-mode voltages generated in medium voltage PWM-CSI drives. IEEE Trans. Power Electron. 18(3), 873–879 (2003)

    Article  Google Scholar 

  20. Wiechmann, E.P., Burgos R.P., Rodriguez, J.: Reduced switching frequency active front end converter for medium voltage current source drive using space vector modulation. In: Proceedings of IEEE ISIE 2000, pp. 288–293 (2000)

  21. Wiechmann, E.P., Aqueveque, P., Burgos, R., Rodríguez, J.: On the efficiency of voltage source and current source inverters for high-power drives. IEEE Trans. Ind. Electron. 55(4), 1771–1782 (2008)

    Article  Google Scholar 

  22. Espinoza, J.R., Joos, G.: A current-source-inverter-fed induction motor drive system with reduced losses. IEEE Trans. Ind. Appl. 34(4), 796–805 (1998)

    Article  Google Scholar 

  23. Bai, Z.H., Zhang, Z.C.: Conformation of multilevel current source converter topologies using the duality principle. IEEE Trans. Power Electron. 23(5), 2260–2267 (2008)

    Article  Google Scholar 

  24. Kwak, S., Toliyat, H.A.: Multilevel converter topology using two types of current-source inverters. IEEE Trans. Ind. Appl. 42(6), 1558–1564 (2006)

    Article  Google Scholar 

  25. Xu, D., Zargari, N.R., Wu, B., Wiseman, J., Yuwen, B., Rizzo, S.: A medium voltage AC drive with parallel current source inverters for high power application. In: Proceedings of IEEE PESC 2005, pp. 2277–2283 (2005)

  26. Antunes, F.L.M., Braga, A.C., Barbi, I.: Application of a generalized current multilevel cell to current source inverters. IEEE Trans. Power Electron. 46(1), 31–38 (1999)

    Google Scholar 

  27. Bao, J.Y., Holmes, D.G., Bai, Z.H., Zhang, Z.C., Xu, D.H.: PWM control of a 5-level single-phase current-source inverter with controlled intermediate DC link current. In: Proceedings of IEEE PESC 2006, pp. 1633–1638 (2006)

  28. McGrath, B.P., Holmes, D.G.: Natural current balancing of multicell current source inverter. IEEE Trans. Power Electron. 23(3), 1239–1246 (2008)

    Article  Google Scholar 

  29. Torres-Salomao, L.A., Gámez-Cuatzin, H.: Fuzzy logic control and PI control comparison for a 1.5 MW horizontal axis wind turbine. In: Proceedings of 16th International Conference on System Theory, Control and Computing, ICSTCC, Control Society, pp. 1–6 (2012)

  30. Bao, J.Y.: A new three-phase 5-level current-source inverter. J. Zhejiang Univ. Sci. A 7, 1973–1978 (2006)

    Article  Google Scholar 

  31. Bao, J.Y.: Generalized multilevel current source inverter topology with self-balancing current. J. Zhejiang Univ. Sci. C Comput. Electron. 11, 555–561 (2010)

    Article  Google Scholar 

  32. Sato, A., Noguchi, T.: Multi-level current-source PWM rectifier based on direct power control. In: Proceedings of 33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 1768–1773 (2007)

  33. Abe, R., Nagai, Y., Tsuyuki, K., Nishikawa, H., Shimamura, T., Kawaguchi, A., Shimada, K.: Development of multiple space vector control for direct connected parallel current source power converters. In Proceedings of the Power Conversion Conference, pp. 283–288 (1997)

  34. Astrom, K.J., Hägglund, T.H.: New tuning methods for PID controllers. In: Proceedings of the 3rd European Control Conference, pp. 2456–2462 (1995)

  35. Jang, J., Gulley, N.: MATLAB: Fuzzy Logic Toolbox, User’s Guide. The Math-Works, Inc., Natick (1997)

    Google Scholar 

  36. Jamshidi, M.: Large-Scale Systems: Modelling, Control and Fuzzy Logic. Prentice-Hall, Upper Saddle River (1997)

    MATH  Google Scholar 

  37. Kandel, A.: Fuzzy Expert Systems. CRC Press Inc, Boca Raton (1992)

    Google Scholar 

  38. Sugeno, M., Kang, G.T.: Structure identification of Fuzzy model. J. Fuzzy Sets Syst. 28(1), 15–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice-Hall, Upper Saddle River (1992)

    MATH  Google Scholar 

  40. McGrath, B.P., Holmes, D.G.: Multicarrier PWM strategies for multilevel inverters. IEEE Trans. Ind. Electron. 49(4), 858–867 (2002)

    Article  Google Scholar 

  41. Bowes, S.R.: New sinusoidal pulse width modulated inverter. Inst. Electr. Eng. 122(11), 1279–1285 (1975)

    Article  Google Scholar 

  42. Boost, M.A., Ziogas, P.D.: State-of-the-art carrier PWM techniques: a critical evaluation. IEEE Trans. Ind. Appl. 24(2), 271–280 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaraj Tamilarasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamilarasi, D., Sivakumaran, T.S. Fuzzy PI Control of Symmetrical and Asymmetrical Multilevel Current Source Inverter. Int. J. Fuzzy Syst. 20, 426–443 (2018). https://doi.org/10.1007/s40815-017-0352-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0352-8

Keywords

Navigation