International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1362–1374 | Cite as

PSO-Self-Organizing Interval Type-2 Fuzzy Neural Network for Antilock Braking Systems



Nowadays, the antilock braking system (ABS) is the standard in all modern cars. The function of ABS is to optimize the maximize wheel traction by preventing wheel lockup during braking, so it can help the drivers to maintain steering maneuverability. In this study, a self-organizing interval type-2 fuzzy neural network (SOT2FNN) control system is designed for antilock braking systems. This control system comprises a main controller and a robust compensation controller; the SOT2FNN as the main controller is used to mimic an ideal controller, and the robust compensation controller is developed to eliminate the approximation error between the main controller and the ideal controller. To guarantee system stability, adaptive laws for adjusting the parameters of SOT2FNN based on the gradient descent method are proposed. However, in control design, the learning rates of adaptive law are very important and they significantly affect control performance. The particle swarm optimization method is therefore applied to find the optimal learning rates for the weights in reduction layer and also for the means, the variances of the Gaussian functions in the input membership functions. Finally, the numerical simulations of ABS response in different road conditions are provided to illustrate the effectiveness of the proposed approach.


Type-2 fuzzy logic system Antilock braking system Particle swarm optimization Self-organizing learning algorithm 



The authors appreciate the financial support in part from the Nation Science Council of Republic of China under Grant NSC 101-2221-E-155-026-MY3.


  1. 1.
    Dadashnialehi, A., Hadiashar, A., Cao, Z., Kapoor, A.: Intelligent sensorless ABS for in-wheel electric vehicles. IEEE Trans. Ind. Electron. 61(8), 1957–1969 (2014)CrossRefGoogle Scholar
  2. 2.
    Wei, Z., Xuexun, G.: An ABS control strategy for commercial vehicle. IEEE Trans. Mechatron. 20(1), 384–392 (2015)CrossRefGoogle Scholar
  3. 3.
    Lin, C.M., Hsu, C.F.: Self-learning fuzzy sliding-mode control for antilock braking systems. IEEE Trans. Control Syst. Technol. 11(2), 273–278 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Poursamad, A.: Adaptive feedback linearization control of antilock braking systems using neural networks. Mechatronics 19, 767–773 (2009)CrossRefGoogle Scholar
  5. 5.
    Sharkawy, A.B.: Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng. Appl. Artif. Intell. 23, 1041–1052 (2010)CrossRefGoogle Scholar
  6. 6.
    Lin, C.M., Hsu, C.F.: Neural-network hybrid control for antilock braking systems. IEEE Trans. Neural Networks 14(2), 351–359 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Corno, M., Gerard, M., Verhaegen, M., Holweg, E.: Hybrid ABS control using force measurement. IEEE Trans. Control Syst. Technol. 20(5), 1223–1235 (2012)CrossRefGoogle Scholar
  8. 8.
    Lin, C.M., Li, H.Y.: Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans. Fuzzy Syst. 21(6), 1044–1055 (2013)CrossRefGoogle Scholar
  9. 9.
    Peric, S.L., Antic, D.S., Milovanovic, M.B., Mitic, D.B., Milojkovic, M.T., Nikolic, S.S.: Quasi-sliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system. IEEE Trans. Mechatron. 21(2), 754–764 (2016)CrossRefGoogle Scholar
  10. 10.
    Topalov, A.V., Oniz, Y., Kayacan, E., Kaynak, O.: Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm. Neurocomputing 74, 1883–1893 (2011)CrossRefGoogle Scholar
  11. 11.
    Tang, Y., Zhang, X., Zhang, D., Zhao, G., Guan, X.: Fractional order sliding mode controller design for antilock braking systems. Neurocomputing 111, 122–130 (2013)CrossRefGoogle Scholar
  12. 12.
    Albus, J.S.: A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J. Dyn. Syst. Meas. Control 97(3), 220–227 (1975)CrossRefMATHGoogle Scholar
  13. 13.
    Hung, J.Y., Gao, W., Hsu, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)CrossRefGoogle Scholar
  14. 14.
    Lin, Y.Y., Liao, S.H., Chang, J.Y., Lin, C.T.: Simplified interval type-2 fuzzy neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 959–969 (2014)CrossRefGoogle Scholar
  15. 15.
    Juang, C.F., Tsao, Y.W.: A type-2 self-organizing neural fuzzy system and its FPGA implementation. IEEE Trans. Syst. Man Cybern. B Cybern. 38(6), 1537–1548 (2008)CrossRefGoogle Scholar
  16. 16.
    Tao, C.W., Chang, C.W., Taur, J.S.: A simplify type reduction for interval type-2 fuzzy sliding controllers. Int. J. Fuzzy Syst. 15(4), 460–470 (2013)Google Scholar
  17. 17.
    Chang, Y.H., Chen, C.L., Chan, W.S., Lin, H.W.: Type-2 fuzzy formation control for collision-free multi-robot systems. Int. J. Fuzzy Syst. 15(4), 435–451 (2013)Google Scholar
  18. 18.
    Ma, X., Wu, P., Zhou, L., Chen, H., Zheng, T., Ge, J.: Approaches based on interval type-2 fuzzy aggregation operators for multiple attribute group decision making. Int. J. Fuzzy Syst. 18(4), 697–715 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Castillo, O., Castro, J.R., Melin, P., Rodriguez-Diaz, A.: Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction. Soft Comput. 18(6), 1213–1224 (2014)CrossRefGoogle Scholar
  20. 20.
    Pratama, M., Lu, J., Zhang, G.: Evolving type-2 fuzzy classifier. IEEE Trans. Fuzzy Syst. 24(3), 574–589 (2016)CrossRefGoogle Scholar
  21. 21.
    Pratama, M., Zhang, G., Er, M.J., Anavatti, S.: An incremental type-2 meta-cognitive extreme learning machine. IEEE Trans. Cybern. 47(2), 339–353 (2016)Google Scholar
  22. 22.
    Sabahi, K., Ghaemi, S., Pezeshki, S.: Gain scheduling technique using MIMO type-2 fuzzy logic system for LFC in restructure power system. Int. J. Fuzzy Syst. (2016). doi: 10.1007/s40815-016-0240-7 Google Scholar
  23. 23.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHGoogle Scholar
  24. 24.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Liang, Q., Mendel, M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  26. 26.
    Farahani, M., Ganjefar, S.: An online trained fuzzy neural network controller to improve stability of power systems. Neurocomputing 162, 245–255 (2015)CrossRefGoogle Scholar
  27. 27.
    Liu, Y.C., Liu, S.Y., Wang, N.: Fully-tuned fuzzy neural network based robust adaptive tracking control of unmanned underwater vehicle with thruster dynamics. Neurocomputing 196, 1–13 (2016)CrossRefGoogle Scholar
  28. 28.
    Castro, J.R., Castillo, O., Melin, P., Rodriguez-Diaz, A.: A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf. Sci. 179(13), 2175–2193 (2009)CrossRefMATHGoogle Scholar
  29. 29.
    Pan, Y., Er, M.J., Li, X., Yu, H., Gouriveau, R.: Machine health condition prediction via online dynamic fuzzy neural networks. Eng. Appl. Artif. Intell. 35, 105–113 (2014)CrossRefGoogle Scholar
  30. 30.
    Wang, N., Er, M.J., Meng, X.: A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks. Neurocomputing 72, 3818–3829 (2009)CrossRefGoogle Scholar
  31. 31.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Conf. Neural Netw. 4, 1942–1948 (1995)Google Scholar
  32. 32.
    Lin, C.M., Lin, M.H., Chen, C.W.: SoPC based adaptive PID control system design for magnetic levitation system. IEEE Syst. J. 5(2), 278–287 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lin, C.J., Hong, S.J.: The design of neuro-fuzzy networks using particle swarm optimization and recursive singular value decomposition. Neurocomputing 71, 297–310 (2007)CrossRefGoogle Scholar
  34. 34.
    Ranjani, M., Murugesan, P.: Optimal fuzzy controller parameters using PSO for speed control of quasi-Z source DC/DC converter fed drive. Appl. Soft Comput. 27, 332–356 (2015)CrossRefGoogle Scholar
  35. 35.
    Bingül, Z., Karahan, O.: A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Exp. Syst. Appl. 38(1), 1017–1031 (2011)CrossRefGoogle Scholar
  36. 36.
    Kumar, E.V., Raaja, R.S., Jerome, J.: Adaptive PSO for optimal LQR tracking control of 2 DoF laboratory helicopter. Appl. Soft Comput. 41, 77–90 (2016)CrossRefGoogle Scholar
  37. 37.
    Juang, C.F., Tsao, Y.W.: A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans. Fuzzy Syst. 16(6), 1411–1424 (2008)CrossRefGoogle Scholar
  38. 38.
    Lin, C.M., Chen, Y.M., Hsueh, C.S.: A self-organizing interval type-2 fuzzy neural network for radar emitter identification. Int. J. Fuzzy Syst. 16(1), 20–30 (2014)Google Scholar
  39. 39.
    Harned, J., Johnston, L., Scharpf, G.: Measurement of tire brake force characteristics as related to wheel slip (antilock) control system design. SAE Pap. 78, 909–925 (1969)Google Scholar
  40. 40.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions. IEEE Computational Intelligence Magazine. Prentice-Hall, Upper Saddle River (2001)Google Scholar
  41. 41.
    Slotine, J.J.E., Li, W.P.: Applied Nonlinear Control, Englewood Cliffs. Prentice-Hall, Englewood Cliffs (1991)Google Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Yuan Ze UniversityTaoyuanTaiwan
  2. 2.Department of Electrical Electronic and Mechanical EngineeringLac Hong UniversityBienHoaVietnam

Personalised recommendations