Skip to main content
Log in

Fuzzy Fractional Minimal Cost Flow Problem

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A new version of fractional minimal cost flow problem with fuzzy arc costs is focused in this study. The fuzzy arc costs are applied as in most of the real-world applications, the parameters have high degree of uncertainty. The goal of this problem is to determine the minimum fuzzy fractional cost of sending and passing a specified flow value into and from a network. A decomposition-based solution methodology is introduced to tackle this problem. The methodology applies Zadeh’s extension principle to decompose the problem to two upper bound and lower bound problems. These problems are capable of being solved for different \(\alpha\)-cut values to construct the fuzzy fractional minimal cost flow value as the objective function value. The efficiency of the proposed solution methodology is studied over some well-known examples of fractional minimal cost flow problem. The obtained results show the superiority of the proposed approach comparing to the methods of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Badri, H., Fatemi Ghomi, S.M.T., Hejazi, T.H.: A two-stage stochastic programming model for value-based supply chain network design. Sci. Iran. 23(1), 348–360 (2016)

    Google Scholar 

  3. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley, New York (2010)

    MATH  Google Scholar 

  4. Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Naval Res. Logist. Q. 9(3–4), 181–186 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dhanasekar, S., Hariharan, S., Sekar, P.: Fuzzy Hungarian MODI algorithm to solve fully fuzzy transportation problems. Int. J. Fuzzy Syst. (2016). doi:10.1007/s40815-016-0251-4

    Google Scholar 

  6. Ebrahimnejad, A., Nasseri, S.H., Mansourzadeh, S.M.: Modified bounded dual network simplex algorithm for solving minimum cost flow problem with fuzzy costs based on ranking functions. J. Intell. Fuzzy Syst. 24, 191–198 (2013)

    Google Scholar 

  7. Fakhri, A., Ghatee, M.: Fractional multi-commodity flow problem: duality and optimality conditions. Appl. Math. Model. 38, 2151–2162 (2014)

    Article  MathSciNet  Google Scholar 

  8. GAMS Software, http://www.gams.com/ (2016)

  9. Ghasemi, R., Nikfar, M., Roghanian, E.: A revision on area ranking and deviation degree methods of ranking fuzzy numbers. Sci. Iran. 22(3), 1142–1154 (2015)

  10. Ghatee, M., Hashemi, S.M., Zarepisheh, M., Khorram, E.: Preemptive priority-based algorithms for fuzzy minimal cost flow problem: an application in hazardous materials transportation. Comput. Ind. Eng. 57, 341–354 (2009)

    Article  Google Scholar 

  11. Ghatee, M., Hashemi, S.M.: Generalized minimal cost flow problem in fuzzy nature: an application in bus network planning problem. Appl. Math. Model. 32, 2490–2508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghatee, M., Hashemi, S.M.: Application of fuzzy minimum cost flow problems to network design under uncertainty. Fuzzy Sets Syst. 160, 3263–3289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem—part II. Oper. Res. 11(6), 863–888 (1963)

    Article  MATH  Google Scholar 

  14. Kaufmann, A., Gupta, M.M.: Fuzzy Mathematical Models in Engineering and Management Scienc. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  15. Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetics: Theory and Applications. Van Nostrand Reinhold, New York (1991)

    MATH  Google Scholar 

  16. Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets, vol. 1. Academic Press, New York (1975)

    MATH  Google Scholar 

  17. Khalili, S., Mohammadzade, H., Fallahnezhad, M.S.: A new approach based on queuing theory for solving the assembly line balancing problem using fuzzy prioritization techniques. Sci. Iran. 23(1), 387–398 (2016)

  18. Singh, S.K., Yadav, S.P.: Fuzzy programming approach for solving intuitionistic fuzzy linear fractional programming problem. Int. J. Fuzzy Syst. 18(2), 263–269 (2016)

    Article  MathSciNet  Google Scholar 

  19. Liu, S.T., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153, 661–674 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, S.T.: Fuzzy total transportation cost measures for fuzzy solid transportation problem. Appl. Math. Comput. 174, 927–941 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Liu, S.T.: Fuzzy profit measures for a fuzzy economic order quantity model. Appl. Math. Model. 32, 2076–2086 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, S.T.: Fractional transportation problem with fuzzy parameters. Soft. Comput. 20, 3629–3636 (2016)

    Article  Google Scholar 

  23. Niroomand, S., Mahmoodirad, A., Heydari, A., Kardani, F., Hadi-Vencheh, A.: An extension principle based solution approach for shortest path problem with fuzzy arc lengths. Oper. Res. (2016). doi:10.1007/s12351-016-0230-4

    Google Scholar 

  24. Sherali, H.D.: On a fractional minimal cost flow problem on networks. Optim. Lett. 6, 1945–1949 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Toksarı, M.D., Bilim, Y.: Interactive fuzzy goal programming based on Jacobian matrix to solve decentralized bi-level multi-objective fractional programming problems. Int. J. Fuzzy Syst. 17(4), 499–508 (2015)

    Article  MathSciNet  Google Scholar 

  26. Veeramani, C., Sumathi, M.: Fuzzy mathematical programming approach for solving fuzzy linear fractional programming problem. FUZZ-IEEE (2013). doi:10.1109/FUZZ-IEEE.2013.6622568

  27. Xu, C., Xu, X.M., Wang, H.F.: The fractional minimal cost flow problem on network. Optim. Lett. 5(2), 307–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yager, R.R.: A characterization of the extension principle. Fuzzy Sets Syst. 18, 205–217 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, J., Fei, W., Li, D.F.: Non-linear programming approach to solve bi-matrix games with payoffs represented by I-fuzzy numbers. Int. J. Fuzzy Syst. 18(3), 492–503 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zimmermann, H. J.: Fuzzy Set Theory and Its Applications, 3rd edn. Kluwer-Nijhoff, Boston (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mahmoodirad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodirad, A., Niroomand, S., Mirzaei, N. et al. Fuzzy Fractional Minimal Cost Flow Problem. Int. J. Fuzzy Syst. 20, 174–186 (2018). https://doi.org/10.1007/s40815-017-0293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0293-2

Keywords

Navigation