Abonyi, J.: Fuzzy Model Identification for Control. Birkhäuser, Boston (2003). doi:10.1007/978-1-4612-0027-7
Book
MATH
Google Scholar
Ackermann, J.: Sampled-data control systems: analysis and synthesis, robust system design, 1 edn. Communications and Control Engineering Series. Springer-Verlag Berlin Heidelberg (1985). doi:10.1007/978-3-642-82554-5
Albertos, P., Piqueras, A.S.: Iterative Identification and Control. Springer, London (2002). doi:10.1007/978-1-4471-0205-2
Babuška, R.: Fuzzy Modeling for Control. International Series in Intelligent Technologies. Kluwer Academic Publishers Group, Dordrecht (1998)
Google Scholar
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy \(c\)-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984). doi:10.1016/0098-3004(84)90020-7
Article
Google Scholar
Dou, L., Zong, Q., Sun, L., Ji, Y.: Excitation signal design for closed-loop system identification. In: Chinese Control and Decision Conference, pp. 1471–1476 (2009). doi:10.1109/CCDC.2009.5192214
Fang, K., Shenton, A.T.: Constrained optimal test signal design for improved prediction error. IEEE Trans. Autom. Sci. Eng. 11(4), 1191–1202 (2014). doi:10.1109/TASE.2013.2264810
Article
Google Scholar
Analysis and Synthesis of Fuzzy Control Systems: A Model Based Approach. Automation and Control Engineering Series. CRC Press, Boca Raton, FL (2010). doi:10.1201/EBK1420092646
Gevers, M.: Identification for control. Annu. Rev. Control 20, 95–106 (1996). doi:10.1016/S1367-5788(97)00008-4
Article
Google Scholar
Gevers, M.: Identification for control: from the early achievements to the revival of experiment design. Eur. J. Control 11(4–5), 335–352 (2005). doi:10.3166/ejc.11.335-352
MathSciNet
Article
MATH
Google Scholar
Gómez-Skarmeta, A., Delgado, M., Vila, M.A.: About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets Syst. 106(2), 179–188 (1999). doi:10.1016/S0165-0114(97)00276-5
Article
Google Scholar
Graybill, F.A.: Matrices with applications in statistics, In: Duxbury Classic Series (2 edn). Wadsworth International Group, Belmont (1983)
Hjalmarsson, H., Jansson, H.: Closed loop experiment design for linear time invariant dynamical systems via lmis. Automatica 44(3), 623–636 (2008). doi:10.1016/j.automatica.2007.06.022
MathSciNet
Article
MATH
Google Scholar
Hsiao, C.C., Su, S.F., Lee, T.T., Chuang, C.C.: Hybrid compensation control for affine TSK fuzzy control systems. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1865–1873 (2004). doi:10.1109/TSMCB.2004.830338
Article
Google Scholar
Johansen, T.A., Hunt, K.J., Gawthrop, P.J., Fritz, H.: Off-equilibrium linearisation and design of gain scheduled control with application to vehicle speed control. Control Eng. Pr. 6, 167–180 (1998). doi:10.1016/S0967-0661(98)00015-X
Article
Google Scholar
Johansen, T.A., Shorten, R., Murray-Smith, R.: On the interpretation and identification of dynamic Takagi–Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 8(3), 297–313 (2000). doi:10.1109/91.855918
Article
Google Scholar
Jørgensen, S.B., Lee, J.H.: Recent advances and challenges in process identification. In: Proceedings of the 6th International Conference on Chemical Process Control, vol. 98, pp. 55–74 Tucson, Arizona (2001)
Kim, E., Kim, S.: Stability analysis and synthesis for an affine fuzzy control system via LMI and ILMI: continuous case. IEEE Trans. Fuzzy Syst. 10(3), 391–400 (2002). doi:10.1109/TFUZZ.2002.1006442
Article
Google Scholar
Kroll, A.: On choosing the fuzziness parameter for identifying TS models with multidimensional membership functions. J. Artif. Intell. Soft Comput. Res. 1(4), 283–300 (2011)
Google Scholar
Kroll, A., Dürrbaum, A.: On control-specific derivation of affine Takagi-Sugeno models from physical models: Assessment criteria and modeling procedure. In: IEEE Symposium Series on Computational Intelligence. Paris, France (2011)
Kung, C.C., Su, J.Y.: Affine takagi-sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion. IET Control Theory Appl. 1(5), 1255–1265 (2007). doi:10.1049/iet-cta:20060415
MathSciNet
Article
Google Scholar
Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain mimo nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016). doi:10.1109/TFUZZ.2015.2486811
Article
Google Scholar
Ljung, L.: Perspectives on system identification. Annu. Rev. Control 34(1), 1–12 (2010). doi:10.1016/j.arcontrol.2009.12.001
Article
Google Scholar
Narasimhan, S., Rengaswamy, R.: Multiobjective input design for system identification – frequency selection for identification of nonlinear systems. In: 14th IFAC Symposium on System Identification. Newcastle, Australia (2006). doi:10.3182/20060329-3-AU-2901.00183
Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2000). doi:10.1007/978-3-662-04323-3
Schrama, R.J.P.: Accurate identification for control: the necessity of an iterative scheme. IEEE Trans. Autom. Control 37(7), 991–994 (1992). doi:10.1109/9.148355
MathSciNet
Article
MATH
Google Scholar
Schrodt, A., Kroll, A.: Drift term compensating control for off-equilibrium operation of nonlinear systems with Takagi-Sugeno fuzzy models. In: Proceedings of the 14th European Control Conference (ECC), pp. 392–397. EUCA, Linz, Austria (2015). doi:10.1109/ECC.2015.7330575
Schrodt, A., Kroll, A.: Using an iterative and affine closed-loop identification and controller design scheme for Takagi-Sugeno models. In: Proceedings of the 17th IFAC Symposium on System Identification (SysID), pp. 362–367. IFAC, Beijing, China (2015). doi:10.1016/j.ifacol.2015.12.154
Sugeno, M., Takagi, T.: Multi-dimensional fuzzy reasoning. Fuzzy Sets Syst. 9(1–3), 313–325 (1983). doi:10.1016/S0165-0114(83)80030-X
Article
MATH
Google Scholar
Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)
Book
Google Scholar
Wang, H., Yang, G.H.: Controller design for affine fuzzy systems via characterization of dilated linear matrix inequalities. Fuzzy Sets Syst. 217, 96–109 (2013). doi:10.1016/j.fss.2012.10.006. Theme: Control Systems
MathSciNet
Article
MATH
Google Scholar
Wang, T., Tong, S.: Observer-based output-feedback asynchronous control for switched fuzzy systems. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2016.2558821
Google Scholar
Xie, X., Yang, D., Ma, H.: Observer design of discrete-time t–s fuzzy systems via multi-instant homogenous matrix polynomials. IEEE Trans. Fuzzy Syst. 22(6), 1714–1719 (2014)
Article
Google Scholar
Xie, X., Yue, D., Zhang, H., Xue, Y.: Control synthesis of discrete-time t-s fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Trans. Cybern. 46(3), 630–640 (2016). doi:10.1109/TCYB.2015.2411336
Article
Google Scholar
Xie, X.P., Liu, Z.W., Zhu, X.L.: An efficient approach for reducing the conservatism of lmi-based stability conditions for continuous-time t–s fuzzy systems. Fuzzy Sets Syst. 263, 71–81 (2015). doi:10.1016/j.fss.2014.05.020. Theme: Automatic Control
MathSciNet
Article
MATH
Google Scholar
Zhang, Z., Lin, C., Chen, B.: New stability and stabilization conditions for t–s fuzzy systems with time delay. Fuzzy Sets Syst. 263, 82–91 (2015). doi:10.1016/j.fss.2014.09.012
MathSciNet
Article
MATH
Google Scholar