Skip to main content

A Generalization of Rand and Jaccard Indices with Its Fuzzy Extension


The Jaccard and Rand indices are the best-known and used similarity measures. In general, the Jaccard index is relatively conservative, but the Rand index is relatively optimistic. In the paper, we make a generalization of Rand and Jaccard indices with its fuzzy extension. We first define a compromised weight to improve the Rand and Jaccard indices and provide the weight parameter selection. We then further advance this into fuzzy extension so that it can be used to measure similarities between fuzzy partitions and crisp reference partitions and those between fuzzy partitions and fuzzy reference partitions. Therefore, the proposed method is more flexible and reasonable to provide a useful way that can be applied in practical studies according to actual demands. Finally, we use simulation and make comparisons to complete more explanations and further discussions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Jaccard, P.: Novelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270 (1908)

    Google Scholar 

  2. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  3. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–569 (1983)

    Article  MATH  Google Scholar 

  4. Hubert, L., Arabie, P.: Comparing partitions. J. Classif 2, 193–218 (1985)

    Article  MATH  Google Scholar 

  5. Carpineto, C., Romano, G.: Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2315–2326 (2012)

    Article  Google Scholar 

  6. Yin, Y., Yasuda, K.: Similarity coefficient methods applied to the cell formation problem: a taxonomy and review. Int. J. Prod. Econ. 101, 329–352 (2006)

    Article  Google Scholar 

  7. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkley (1967)

  8. Pollard, D.: Quantization and the method of k-means. IEEE Trans. Inf. Theory 28, 199–205 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–356 (1965)

    MathSciNet  Article  MATH  Google Scholar 

  10. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  11. Yang, M.S.: A survey of fuzzy clustering. Math. Comput. Model. 18, 1–16 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  12. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition-part I and II. IEEE Trans. Syst. Man Cybern. B Cybern. 29, 778–801 (1999)

    Article  Google Scholar 

  13. Campello, R.J.G.B.: A fuzzy extension of the rand index and other related indexes for clustering and classification assessment. Pattern Recognit. Lett. 28, 833–841 (2007)

    Article  Google Scholar 

  14. Brouwer, R.K.: Extending the rand, adjusted rand, and Jaccard indices to fuzzy partitions. J. Intell. Inf. Syst. 32, 213–235 (2009)

    Article  Google Scholar 

  15. Anderson, D.T., Bezdek, J.C., Popescu, M., Keller, J.M.: Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18, 906–918 (2010)

    Article  Google Scholar 

  16. Hullermeier, E., Rifqi, M., Henzgen, S., Senge, R.: Comparing fuzzy partitions: a generalization of the Rand Index and related measures. IEEE Trans. Fuzzy Syst. 20, 546–556 (2012)

    Article  Google Scholar 

  17. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inform. Syst. 17, 107–145 (2001)

    Article  MATH  Google Scholar 

  18. Epstein, S., Meier, P.: Constructive thinking: a board coping variable with specific components. J. Pers. Soc. Psychol. 57, 332–350 (1989)

    Article  Google Scholar 

  19. Tennen, H., Affleck, G.: The costs and benefits of optimistic explanations and dispositional optimism. J. Pers. 55, 377–393 (1987)

    Article  Google Scholar 

  20. Peterson, C.: Explanatory style as a risk factor for illness. Cogn. Ther. Res. 12, 119–132 (1988)

    Article  Google Scholar 

  21. Cantor, N., Norem, J.K.: Defensive pessimism and stress and coping”. Soc. Cognit. 7, 92–112 (1989)

    Article  Google Scholar 

  22. Quere, R., Le Capitaine, H., Fraisseix, N., Frelicot, C.: On normalizing fuzzy coincidence matrices to compare fuzzy and/or possibilistic partitions with the rand index. In Proceedings of IEEE International Conference on Data Mining, pp. 977–982 (2010)

  23. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1, 98–110 (1993)

    Article  Google Scholar 

  24. Yang, M.S., Lai, C.Y.: A robust automatic merging possibilistic clustering method. IEEE Trans. Fuzzy Syst. 19, 26–41 (2011)

    Article  Google Scholar 

Download references


The authors would like to thank the anonymous referees for their helpful comments in improving the presentation of this paper. This work was supported in part by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST-103-2118-M-033-001-MY2.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Miin-Shen Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeh, CC., Yang, MS. A Generalization of Rand and Jaccard Indices with Its Fuzzy Extension. Int. J. Fuzzy Syst. 18, 1008–1018 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Similarity measure
  • Rand index
  • Jaccard index
  • Fuzzy set
  • Compromised weight