Advertisement

International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1300–1316 | Cite as

Hesitant Uncertain Linguistic Z-Numbers and Their Application in Multi-criteria Group Decision-Making Problems

Article

Abstract

This paper introduces hesitant uncertain linguistic Z-numbers (HULZNs) based on Z-numbers and linguistic models. HULZNs can serve as a reliable tool to depict complex and uncertain decision-making information and reflect the hesitancy of DMs. This paper focuses on the development of an innovative method to address multi-criteria group decision-making (MCGDM) problems in which the weight information is incompletely known. Handling qualitative information requires the effective support of quantitative tools, after which the linguistic scale function is employed to deal with linguistic information. First, the operations and distance of HULZNs are defined. Then, two power aggregation operators for HULZNs are proposed. Subsequently, a new MCGDM approach is developed by incorporating the power aggregation operators and the VIKOR model. Finally, an illustrative example of ERP system selection is provided for demonstration, and the feasibility and validity of the proposed method are further verified by sensitivity analysis and comparison with an existing method.

Keywords

Multi-criteria group decision-making Hesitant uncertain linguistic Z-numbers Linguistic scale function Power aggregation operators VIKOR method 

Notes

Acknowledgments

The authors thank the editors and anonymous reviewers for their helpful comments and suggestions. This work was supported by the National Natural Science Foundation of China (Nos. 71571193 and 71271218).

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–356 (1965)CrossRefMATHGoogle Scholar
  2. 2.
    Yager, R.R.: Multiple objective decision-making using fuzzy sets. Int. J. Man Mach. Stud. 9(4), 375–382 (1977)CrossRefMATHGoogle Scholar
  3. 3.
    Khatibi, V., Montazer, G.A.: Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artif. Intell. Med. 47(1), 43–52 (2009)CrossRefGoogle Scholar
  4. 4.
    Cateni, S., Vannucci, M., Colla, V.: Industrial multiple criteria decision making problems handled by means of fuzzy inference-based decision support systems. In: International Conference on Intelligent Systems, Modelling and Simulation, ISMS 2013, Bangkok (Thailand), pp. 12–17 (2013)Google Scholar
  5. 5.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefMATHGoogle Scholar
  6. 6.
    Liu, P.D.: Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 22(1), 83–97 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wu, X.H., Wang, J.Q., Peng, J.J., Chen, X.H.: Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. (2016). doi: 10.1007/s40815-016-0180-2 Google Scholar
  8. 8.
    Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In: The 18th IEEE International Conference on Fuzzy Systems, pp. 1378–1382 (2009)Google Scholar
  9. 9.
    Rodríguez, R.M., Bedregal, B., Bustince, H., Dong, Y.C., Farhadinia, B., Kahraman, C., Martinez, L., Torra, V., Xu, Y.J., Xu, Z.S., Herrera, F.: A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. Inf. Fusion 29, 89–97 (2016)CrossRefGoogle Scholar
  10. 10.
    Kang, B.Y., Wei, D.J., Li, Y., Deng, Y.: Decision making using Z-numbers under uncertain environment. J. Comput. Inf. Syst. 8(7), 2807–2814 (2012)Google Scholar
  11. 11.
    Zadeh, L.A.: A note on Z-numbers. Inf. Sci. 181(14), 2923–2932 (2011)CrossRefMATHGoogle Scholar
  12. 12.
    Velammal, G., Bhanu, M.S.: Intuitionistic Z-numbers. Am. Int. J. Res. Sci. Technol. Eng. Math. 9(1), 140–142 (2015)Google Scholar
  13. 13.
    Aliev, R.R., Mraiziq, D.A.T., Huseynov, O.H.: Expected utility based decision making under Z-information and its application. Comput. Intell. Neurosci. (2015). doi: 10.1155/2015/364512 Google Scholar
  14. 14.
    Bhanu, M.S., Velammal, G.: Operations on Zadeh’s Z-number. IOSR J. Math. 11(3), 88–94 (2015)Google Scholar
  15. 15.
    Aliev, R.A., Alizadeh, A.V., Huseynov, O.H.: The arithmetic of discrete Z-numbers. Inf. Sci. 290(C), 134–155 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Patel, P., Khorasani, E.S., Rahimi, S.: Modeling and implementation of Z-number. Soft. Comput. 20(4), 1–24 (2015)Google Scholar
  17. 17.
    Banerjee, R., Pal, S.K.: On Z-numbers and the machine-mind for natural language comprehension. In: Tamir, D.E., Rishe, N.D., Kandel, A. (eds.) Fifty Years of Fuzzy Logic and its Applications, pp. 415–457. Springer, Berlin (2015)Google Scholar
  18. 18.
    Kang, B.Y., Hu, Y., Deng, Y., Zhou, D.Y.: A new methodology of multi-criteria decision-making in supplier selection based on Z-numbers. Math. Prob. Eng. 2016(1), 1–17 (2016)Google Scholar
  19. 19.
    Kang, B.Y., Wei, D., Li, Y., Deng, Y.: A method of converting Z-number to classical fuzzy number. J. Inf. Comput. Sci. 9(3), 703–709 (2012)Google Scholar
  20. 20.
    Xiao, Z.Q.: Application of Z-numbers in multi-criteria decision making. In: International Conference on Informative and Cybernetics for Computational Social Systems. IEEE, pp. 91–95 (2014)Google Scholar
  21. 21.
    Yaakob, A.M., Gegov, A.: Interactive TOPSIS based group decision making methodology using Z-numbers. Int. J. Comput. Intell. Syst. 9(2), 311–324 (2016)CrossRefGoogle Scholar
  22. 22.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Martínez, L., Ruan, D., Herrera, F., Herrera-Viedma, E., Wang, P.P.: Linguistic decision making: tools and applications. Inf. Sci. 179(14), 2297–2298 (2009)CrossRefGoogle Scholar
  24. 24.
    Chen, Y.H., Wang, T.C., Wu, C.Y.: Multi-criteria decision making with fuzzy linguistic preference relations. Appl. Math. Model. 35(3), 1322–1330 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Rodríguez, R.M., Labella, Á., Martínez, L.: An overview on fuzzy modelling of complex linguistic preferences in decision making. Int. J. Comput. Intell. Syst. 9(sup1), 81–94 (2016)CrossRefGoogle Scholar
  26. 26.
    Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Xu, Z.S.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168(1), 171–184 (2004)CrossRefMATHGoogle Scholar
  28. 28.
    Wei, G.W., Zhao, X.F., Lin, R., Wang, H.J.: Uncertain linguistic Bonferroni mean operators and their application to multiple attribute decision making. Appl. Math. Model. 37(7), 5277–5285 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Park, J.H., Gwak, M.G., Kwun, Y.C.: Uncertain linguistic harmonic mean operators and their applications to multiple attribute group decision making. Computing 93(1), 47–64 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Tian, Z.P., Wang, J., Wang, J.Q., Zhang, H.Y.: A likelihood-based qualitative flexible approach with hesitant fuzzy linguistic information. Cogn. Comput. 8(4), 670–683 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhang, Z., Wu, C.: Hesitant fuzzy linguistic aggregation operators and their applications to multiple attribute group decision making. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 26(5), 2185–2202 (2014)MathSciNetMATHGoogle Scholar
  32. 32.
    Zhou, H., Wang, J.Q., Zhang, H.Y.: Multi-criteria decision-making approaches based on distance measures for linguistic hesitant fuzzy sets. J. Oper. Res. Soc. (2016). doi: 10.1057/jors.2016.41 Google Scholar
  33. 33.
    Wang, J., Wang, J.Q., Zhang, H.Y.: A likelihood-based TODIM approach based on multi-hesitant fuzzy linguistic information for evaluation in logistics outsourcing. Comput. Ind. Eng. 99, 287–299 (2016)CrossRefGoogle Scholar
  34. 34.
    Lawry, J.: An alternative approach to computing with words. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(1), 3–16 (2001)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Delgado, M., Verdegay, J.L., Vila, M.A.: On aggregation operations of linguistic labels. Int. J. Intell. Syst. 8(3), 351–370 (1993)CrossRefMATHGoogle Scholar
  36. 36.
    Morente-Molinera, J.A., Pérez, I.J., Ureña, M.R.: On multi-granular fuzzy linguistic modeling in group decision making problems: a systematic review and future trends. Knowl. Based Syst. 74, 49–60 (2015)CrossRefGoogle Scholar
  37. 37.
    Han, Z.Q., Wang, J.Q., Zhang, H.Y., Luo, X.X.: Group multi-criteria decision making method with triangular type-2 fuzzy numbers. Int. J. Fuzzy Syst. 18(4), 673–684 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yu, S.M., Wang, J., Wang, J.Q.: An interval type-2 fuzzy likelihood-based MABAC approach and its application in selecting hotels on the tourism website. Int. J. Fuzzy Syst. (2016). doi: 10.1007/s40815-016-0217-6 Google Scholar
  39. 39.
    Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)CrossRefGoogle Scholar
  40. 40.
    Wang, J.H., Hao, J.Y.: A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 14(3), 435–445 (2006)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ma, Y.X., Wang, J., Wang, J.Q., Chen, X.H.: 2-tuple linguistic aggregation operators based on subjective sensation and objective numerical scales for multi-criteria group decision-making problems. Sci. Iran. 23(3), 1399–1417 (2016)Google Scholar
  42. 42.
    Wang, J.Q., Peng, J.J., Zhang, H.Y., Liu, T., Chen, X.H.: An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis. Negot. 24(1), 171–192 (2015)CrossRefGoogle Scholar
  43. 43.
    Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers. Soft. Comput. 20(4), 1621–1633 (2016)CrossRefGoogle Scholar
  44. 44.
    Tian, Z.P., Wang, J., Wang, J.Q., Zhang, H.Y.: Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach. Learn. Cybernet. (2016). doi: 10.1007/s13042-016-0552-9 Google Scholar
  45. 45.
    Opricovic, S.: Multicriteria optimization of civil engineering systems. Fac. Civ. Eng. Belgrade 2(1), 5–21 (1998)MathSciNetGoogle Scholar
  46. 46.
    You, X., You, J., Liu, H., Zhen, L.: Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information. Expert Syst. Appl. 42(4), 1906–1916 (2014)CrossRefGoogle Scholar
  47. 47.
    Liao, H., Xu, Z., Zeng, X.J.: Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans. Fuzzy Syst. 23(5), 1343–1355 (2015)CrossRefGoogle Scholar
  48. 48.
    Yager, R.R.: The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 724–731 (2001)CrossRefGoogle Scholar
  49. 49.
    Tian, Z.P., Wang, J., Wang, J.Q., Zhang, H.Y.: Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis. Negot. (2016). doi: 10.1007/s10726-016-9479-5 Google Scholar
  50. 50.
    Liu, P.D., Teng, F.: Multiple attribute decision making method based on normal neutrosophic generalized weighted power averaging operator. Int. J. Mach. Learn. Cybernet. (2015). doi: 10.1007/s13042-015-0385-y Google Scholar
  51. 51.
    Bao, G.Y., Lian, X.L., He, M., Wang, L.L.: Improved two-tuple linguistic representation model based on new linguistic evaluation scale. Control Decis. 25(5), 780–784 (2010)MathSciNetGoogle Scholar
  52. 52.
    Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econom. J. Econom. Soc. 47(2), 263–291 (1979)MATHGoogle Scholar
  53. 53.
    Kim, S.H., Han, C.H.: An interactive procedure for multi-attribute group decision making with incomplete information. Comput. Oper. Res. 26(8), 755–772 (1999)CrossRefMATHGoogle Scholar
  54. 54.
    Xu, J.P., Wu, Z.: A maximizing consensus approach for alternative selection based on uncertain linguistic preference relations. Comput. Ind. Eng. 64(4), 999–1008 (2013)CrossRefGoogle Scholar
  55. 55.
    Zhang, G.Q., Dong, Y., Xu, Y.: Consistency and consensus measures for linguistic preference relations based on distribution assessments. Inf. Fusion 17(1), 46–55 (2014)CrossRefGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of BusinessCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations