International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1546–1559 | Cite as

Fuzzy Soft Expert System in Prediction of Coronary Artery Disease

  • Nasruddin Hassan
  • Osama Rashed Sayed
  • Ahmed Mostafa Khalil
  • Mohamed Abdel Ghany
Article
  • 103 Downloads

Abstract

Coronary artery disease affects millions of people all over the world including a major portion in Egypt every year. Although much progress has been done in medical science, early detection of this disease is still a challenge for prevention. In this paper we, will extend the concept of fuzzy soft set theory so as to develop a knowledge-based system in medicine and devise a prediction system named fuzzy soft expert system consisting of four main components. These are a fuzzification which translates inputs into fuzzy values, fuzzification of data sets to obtain fuzzy soft sets, a new fuzzy soft set by normal parameter reduction of fuzzy soft set and an algorithm to produce the resultant output. The fuzzy soft expert system developed is then used to predict for coronary artery disease using systolic blood pressure, low-density lipoprotein cholesterol, maximum heart rate, blood sugar, old peak and age of patients. A preliminary study is conducted on nine male patients undergoing treatment in the Cardiac Unit of the Faculty of Medicine, Assiut University, Egypt. It is found that the fuzzy soft expert system developed is able is to help the expert doctor to decide whether a patient needs to be given drug therapy or intervention.

Keywords

Fuzzy soft set Fuzzy soft expert system Low-density lipoprotein cholesterol Maximum heart rate Systolic blood pressure 

Notes

Acknowledgments

We are indebted to Universiti Kebangsaan Malaysia for providing financial support for this research under the Grant DPP-2015-FST.

References

  1. 1.
    Park, K.: Park ’s Textbook of Preventive and Social Medicine. Banarsidas Bhanot, Madhya Pradesh (2015)Google Scholar
  2. 2.
    Schuster, A., Adamson, K., Bell, D.A.: Decision-making on fuzzy pieces of evidence. In: Workshop on Intelligent Data Analysis in Medicine and Pharmacology, pp. 114–116. Washington DC, USA (1999)Google Scholar
  3. 3.
    Miller, R.A., Pople, H.E., Myers, J.D.: INTERNIST-1: an experimental computer based diagnostic consultant for general internal medicine. N. Engl. J. Med. 307(8), 468–476 (1982)CrossRefGoogle Scholar
  4. 4.
    Adlassnig, K.P., Kolarz, G.: Computer-assisted medical diagnosis using fuzzy subsets. In: Gupta, M.M., Sanchez, E. (eds.) Approximate Reasoning In Decision Analysis, pp. 219–247 (1982)Google Scholar
  5. 5.
    Vaisi-Raygani, A., Ghaneialvar, H., Rahimi, Z., Nomani, H., Saidi, M., Bahrehmand, F., Tavilani, H., Pourmotabbed, T.: The angiotensin converting enzyme D allele is an independent risk factor for early onset coronary artery disease. Clin. Biochem. 43(15), 1189–1194 (2010)CrossRefGoogle Scholar
  6. 6.
    Genest, J.J., Bard, J.M., Fruchart, J.C., Ordovas, J.M., Wilson, P.F., Schaefer, E.J.: Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis 90(2–3), 149–157 (1991)CrossRefGoogle Scholar
  7. 7.
    Chirinos, J.A., Veerani, A., Zambrano, J.P., Schob, A., Perez, G., Mendez, A.J., Chakko, S.: Evaluation of comorbidity scores to predict all-cause mortality in patients with established coronary artery disease. Int. J. Cardiol. 117(1), 97–102 (2007)CrossRefGoogle Scholar
  8. 8.
    Gamberger, D., Lavrač, N., Krstačić, G.: Active subgroup mining: a case study in coronary heart disease risk group detection. Artif. Intell. Med. 28(1), 27–57 (2003)CrossRefGoogle Scholar
  9. 9.
    Wung, S.F., Drew, B.: Comparison of 18-lead ECG and selected body surface potential mapping leads in determining maximally deviated ST lead and efficacy in detecting acute myocardial ischemia during coronary occlusion. J. Electrocardiol. 32, 30–37 (1999)CrossRefGoogle Scholar
  10. 10.
    Ranjith, P., Baby, P.C., Joseph, P.: ECG analysis using wavelet transform: application to myocardial ischemia detection. ITBM-RBM 24(1), 44–47 (2003)CrossRefGoogle Scholar
  11. 11.
    Ge, D., Sun, L., Zhou, J., Shao, Y.: Discrimination of myocardial infarction stages by subjective feature extraction. Comput. Methods Prog. Biomed. 95(3), 270–279 (2009)CrossRefGoogle Scholar
  12. 12.
    Turkoglu, I., Arslan, A., Ilkay, E.: An expert system for diagnosis of the heart valve diseases. Expert Syst. Appl. 23(3), 229–236 (2002)CrossRefGoogle Scholar
  13. 13.
    Polat, K., Sahan, S., Günes, S.: A new method to medical diagnosis: artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Syst. Appl. 31(2), 264–269 (2006)CrossRefGoogle Scholar
  14. 14.
    Polat, K., Sahan, S., Günes, S.: Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and K-Nn (nearestneighbour) based weighting preprocessing. Expert Syst. Appl. 32(2), 625–631 (2007)CrossRefGoogle Scholar
  15. 15.
    Martis, R.J., Chakraborty, C., Ray, A.K.: A two-stage mechanism for registration and classification of ECG using Gaussian Mixture Model. Pattern. Recog. 42(11), 2979–2988 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Martis, R.J., Krishnan, M.M.R., Chakraborty, C., Pal, S., Sarkar, D., Mandana, K.M., Ray, A.K.: Automated screening of arrhythmia using wavelet based machine learning techniques. J. Med. Syst. 36(2), 677–88 (2012)CrossRefGoogle Scholar
  17. 17.
    Martis, R.J., Chakraborty, C.: Arrhythmia disease diagnosis using neural network using SVM and genetic algorithm optimized k-means clustering. J. Mech. Med. Biol. 11(4), 897–915 (2011)CrossRefGoogle Scholar
  18. 18.
    Kochurani, O.G., Aji, S., Kamal, M.R.: A neuro fuzzy decision tree model for predicting the risk in coronary artery disease. IEEE 22nd International Symposium on Intelligence Control ISIC 2007, pp. 166–171 (2007)Google Scholar
  19. 19.
    Tsipouras, M.G., Exarchos, T.P., Fotiadis, D.I., Kotsia, A.P., Vakalis, K.V., Naka, K.K., Michalis, L.K.: Automated diagnosis of coronary artery disease based on data mining and fuzzy modelling. IEEE Trans. Inf. Technol. Biomed. 12(4), 447–458 (2008)CrossRefGoogle Scholar
  20. 20.
    Kurt, I., Ture, M., Kurum, A.T.: Comparing performances of logistic regression, classification and regression tree and neural networks for predicting coronary artery disease. Expert Syst. Appl. 34(1), 366–374 (2008)CrossRefGoogle Scholar
  21. 21.
    Das, R., Turkoglu, I., Sengur, A.: Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36(4), 7675–7680 (2009)CrossRefGoogle Scholar
  22. 22.
    Adeli, A., Neshat, M.: A fuzzy expert system for heart disease diagnosis. In: Proceedings of International Multi Conference of Engineers and Computer Scientists, vol. 1, pp. 134–139. Hong Kong (2010)Google Scholar
  23. 23.
    Kumar, P.G., Victoire, T.A.A., Renukadevi, P., Devaraj, D.: Design of fuzzy expert system for microarray data classification using a novel genetic swarm algorithm. Expert Syst. Appl. 39(2), 1811–1821 (2012)CrossRefGoogle Scholar
  24. 24.
    Muthukaruppan, S., Er, M.J.: A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Syst. Appl. 39(14), 11657–11665 (2012)CrossRefGoogle Scholar
  25. 25.
    Nahar, J., Imam, T., Tickle, K.S., Chen, Y.P.P.: Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst. Appl. 40(4), 1086–1093 (2013)CrossRefGoogle Scholar
  26. 26.
    Mohammadpour, R.A., Abedi, S.M., Bagheri, S., Ghaemian, A.: Fuzzy rule-based classification system for assessing coronary artery disease. Comput. Math. Methods Med. (2015). doi: 10.1155/2015/564867
  27. 27.
    Hedeshi, N.G., Abadeh, M. S.: Coronary artery disease detection using a fuzzy-boosting PSO approach. Comput. Intell. Neurosci.(2014). doi: 10.1155/2014/783734
  28. 28.
    Patidar, S., Pachori, R.B., Acharya, U.R.: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl. Based Syst. (2015). doi: 10.1016/j.knosys.2015.02.011 Google Scholar
  29. 29.
    Negahbani, M., Joulazadeh, S., Marateb, H.R., Mansourian, M.: Coronary artery disease diagnosis using supervised fuzzy C-means with differential search algorithm based generalized Minkowski metrics. Peertechz J. Biomed. Eng. 1(1), 6–14 (2015)Google Scholar
  30. 30.
    Molodtsov, D.: Soft set theory-first results. Comput. Math. Appl. 37(4–5), 19–31 (1999)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 45(4–5), 555–562 (2003)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft sets. J. Fuzzy Math. 9(3), 589–602 (2001)MathSciNetMATHGoogle Scholar
  33. 33.
    Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 203(2), 412–418 (2007)CrossRefMATHGoogle Scholar
  34. 34.
    Kong, Z., Gao, L., Wang, L.: Comment on “A fuzzy soft set theoretic approach to decision making problems”. J. Comput. Appl. Math. 223(2), 540–542 (2009)CrossRefMATHGoogle Scholar
  35. 35.
    Feng, F., Jun, Y.B., Liu, X.Y., Li, L.F.: An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234(1), 10–20 (2010)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)CrossRefMATHGoogle Scholar
  37. 37.
    Kong, Z., Gao, L., Wang, L., Li, S.: The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl. 56(12), 3029–3037 (2008)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Sikchi, S.S., Sikchi, S., Ali, M.S.: Design of fuzzy expert system for diagnosis of cardiac diseases. Int. J. Med. Sci. Public Health 2(1), 56–61 (2013)CrossRefGoogle Scholar
  39. 39.
    Allahverdi, N., Torun, S., Saritas, I.: Design of a fuzzy expert system for determination of coronary heart disease risk. In: International Conference on Computer System and Technologies (2007)Google Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nasruddin Hassan
    • 1
  • Osama Rashed Sayed
    • 2
  • Ahmed Mostafa Khalil
    • 3
  • Mohamed Abdel Ghany
    • 4
  1. 1.School of Mathematical Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Department of Mathematics, Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Department of Mathematics, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  4. 4.Department of Cardiology, Faculty of MedicineAssiut UniversityAssiutEgypt

Personalised recommendations