International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1417–1429 | Cite as

Fuzzy Robust H Sampled-Data Control for Uncertain Nonlinear Systems with Time-Varying Delay

Article

Abstract

This paper investigates a robust H sampled-data control problem for uncertain nonlinear systems with time-varying delay described by Takagi–Sugeno fuzzy model. By introducing the free-weighting matrices, new stability criteria are obtained in terms of linear matrix inequalities based on Lyapunov–Krasovskii functional theory. Then, a fuzzy sampled-data H controller is designed to achieve a prescribed disturbance attenuation level in the sense that the fuzzy closed-loop system is robustly asymptotically stable. Compared with the existing results, the obtained ones are less conservative without using the conservative crossing inequality and the Jensen integral inequality. Two illustrative examples are provided to show the effectiveness and the merits of the proposed method.

Keywords

Takagi–Sugeno (T–S) fuzzy system Sampled-data control Time-varying delay Robust H control 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61203320, 61572419).

References

  1. 1.
    Chen, C., Liu, Z., Zhang, Y., Chen, C.L.P., Xie, S.-L.: Saturated Nussbaum function based approach for robotic systems with unknown actuator dynamics. IEEE Trans. Cybern. (2015). doi: 10.1109/TCYB.2015.2475363 Google Scholar
  2. 2.
    Chen, C., Liu, Z., Zhang, Y., Chen, C.L.P., Xie, S.-L.: Asymptotic fuzzy tracking control for a class of stochastic strict-feedback systems. IEEE Trans. Fuzzy Syst. (2016). doi: 10.1109/TFUZZ.2016.2566807 Google Scholar
  3. 3.
    Li, Y.-M., Tong, S.-C., Liu, Y.-J., Li, T.-S.: Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach. IEEE Trans. Fuzzy Syst. 22(1), 164–176 (2014)CrossRefGoogle Scholar
  4. 4.
    Li, Y.-M., Tong, S.-C., Liu, Y.-J., Li, T.-S.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybern. 45(1), 138–149 (2015)CrossRefGoogle Scholar
  5. 5.
    Cao, Y.-Y., Frank, P.M.: Analysis and synthesis of nonlinear time delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 22(2), 200–211 (2000)Google Scholar
  6. 6.
    Cao, Y.-Y., Frank, P.M.: Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models. Fuzzy Sets Syst. 124(2), 213–229 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)CrossRefMATHGoogle Scholar
  8. 8.
    Chen, C., Liu, Z., Zhang, Y., Chen, C.L.P., Xie, Shengli: Saturated Nussbaum function based approach for robotic systems with unknown actuator dynamics. IEEE Trans. Cybern. (2015). doi: 10.1109/TCYB.2015.2475363 Google Scholar
  9. 9.
    Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Katayama, H., Ichikawa, A.: H∞ control for sampled-data nonlinear systems described by Takagi-Sugeno fuzzy systems. Fuzzy Sets Syst. 148(3), 431–452 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gao, H.-J., Chen, T.-W.: Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Trans. Fuzzy Syst. 15(5), 972–983 (2007)CrossRefGoogle Scholar
  12. 12.
    Lam, H.K., Leung, F.H.: Sampled-data fuzzy controller for time-delay nonlinear systems: fuzzy-model-based LMI approach. IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(3), 617–629 (2007)CrossRefGoogle Scholar
  13. 13.
    Lam, H.K., Ling, W.K.: Sampled-data fuzzy controller for continuous nonlinear systems. IET Control Theory Appl. 2(1), 32–39 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, D.-Y., Cai, K.-Y.: Reliable H∞ non-uniform sampling fuzzy control for nonlinear systems with time delay. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38(6), 1606–1613 (2008)CrossRefGoogle Scholar
  15. 15.
    Lam, H.K., Seneviratne, L.D.: Tracking control of sampled-data fuzzy-model-based control systems. IET Control Theory Appl. 3(1), 56–67 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kim, D.W., Lee, H.J.: Stability connection between sampled-data fuzzy control systems with quantization and their approximate discrete-time model. Automatica 45(6), 1518–1523 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yoneyama, J.: Robust H∞ control of uncertain fuzzy systems under time-varying sampling. Fuzzy Sets Syst. 161(6), 859–871 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lien, C.-H., Yu, K.-W., Huang, C.-T., Chou, P.-Y., Chung, L.-Y., Chen, J.-D.: Robust H∞ control for uncertain T–S fuzzy time-delay systems with sampled-data input and nonlinear perturbations. Nonlinear Anal. Hybrid Syst. 4(3), 550–556 (2010)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yoneyama, J.: Robust guaranteed cost control of uncertain fuzzy systems under time-varying sampling. Appl. Soft Comput. 11(1), 249–250 (2011)CrossRefGoogle Scholar
  20. 20.
    Chen, P., Han, Q.-L., Yue, D., Tian, E.-G.: Sampled-data robust H∞ control for T–S fuzzy systems with time delay and uncertainties. Fuzzy Sets Syst. 179(1), 20–33 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yang, F.-S., Zhang, H.-G.: T–S model-based relaxed reliable stabilization of networked control systems with time-varying delays under variable sampling. Int. J. Fuzzy Syst. 13(4), 260–269 (2011)MathSciNetGoogle Scholar
  22. 22.
    Lam, H.K.: Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(1), 258–267 (2012)CrossRefGoogle Scholar
  23. 23.
    Zhu, X.-L., Chen, B., Yue, D., Wang, Y.-Y.: An improved input delay approach to stabilization of fuzzy systems under variable sampling. IEEE Trans. Fuzzy Syst. 20(2), 330–341 (2012)CrossRefGoogle Scholar
  24. 24.
    Koo, G.B., Park, J.B., Joo, Y.H.: Exponential mean-square stabilisation for non-linear systems: sampled-data fuzzy control approach. IET Control Theory Appl. 6(18), 2765–2774 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Huang, J., Shi, Y., Huang, H.-N., Li, Z.: l2 − l∞ filtering for multirate nonlinear sampled-data systems using T–S fuzzy models. Digit. Signal Proc. 23(1), 418–426 (2013)CrossRefGoogle Scholar
  26. 26.
    Zhu, X.-L., Chen, B., Wang, Y.-Y., Yue, D.: H∞ stabilization criterion with less complexity for nonuniform sampling fuzzy systems. Fuzzy Sets Syst. 225(16), 58–73 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Koo, G.B., Park, J.B., Joo, Y.H.: Guaranteed cost sampled-data fuzzy control for non-linear systems: a continuous-time Lyapunov approach. IET Control Theory Appl. 7(13), 1745–1752 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ge, X.-H., Han, Q.-L., Jiang, X.-F.: Sampled-data H∞ filtering of Takagi-Sugeno fuzzy systems with interval time-varying delays. J. Franklin Inst. 351(5), 2515–2542 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wu, Z.-G., Shi, P., Su, H.-Y., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)CrossRefGoogle Scholar
  30. 30.
    Jing, X.-J., Lam, H.K., Shi, P.: Fuzzy Sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Cybern. 44(7), 1111–1126 (2014)CrossRefGoogle Scholar
  31. 31.
    Yang, F.-S., Zhang, H.-G., Wang, Y.-C.: An enhanced input-delay approach to sampled-data stabilization of T–S fuzzy systems via mixed convex combination. Nonlinear Dyn. 75(3), 501–512 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Jiang, X.-F.: On sampled-data fuzzy control design approach for T–S model-based fuzzy systems by using discretization approach. Inf. Sci. 296(1), 307–314 (2015)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Li, H.-Y., Sun, X.-J., Shi, P., Lam, H.K.: Control design of interval type-2 fuzzy systems with actuator falut: sampled-data control approach. Inf. Sci. 302(1), 1–13 (2015)MATHGoogle Scholar
  34. 34.
    Liu, H., Zhou, G.-P.: Finite-time sampled-data control for switching T–S fuzzy systems. Neurocomputing 166(20), 294–300 (2015)CrossRefGoogle Scholar
  35. 35.
    Koo, G.B., Park, J.B., Joo, Y.-H.: LMI condition for sampled-data fuzzy control of nonlinear systems. Electron. Lett. 51(1), 29–31 (2015)CrossRefGoogle Scholar
  36. 36.
    Kim, H.J., Koo, G.B., Park, J.-B., Joo, Y.-H.: Decentralized sampled-data H∞ fuzzy filter for nonlinear large-scale systems. Fuzzy Sets Syst. 273(15), 68–86 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Xiao, H.-Q., He, Y., Wu, M., Xiao, S.-P., She, J.-H.: New results on H∞ tracking control based on the T–S fuzzy model for sampled-data networked control system. IEEE Trans. Fuzzy Syst. 23(6), 2439–2448 (2015)CrossRefGoogle Scholar
  38. 38.
    Wu, Z.-G., Shi, P., Su, H.Y., Lu, R.-Q.: Dissipativity-based sampled-data fuzzy control design and its application to truck-trailer system. IEEE Trans. Fuzzy Syst. 23(5), 1669–1679 (2015)CrossRefGoogle Scholar
  39. 39.
    Liu, C., Lam, H.K.: Design of a polynomial fuzzy observer with controller sampled-output measurements for nonlinear systems considering unmeasurable premise variables. IEEE Trans. Fuzzy Syst. 23(6), 2067–2079 (2015)CrossRefGoogle Scholar
  40. 40.
    Wang, Z.-P., Wu, H.-N.: On fuzzy sampled-data control of chaotic systems via a time-dependent Lyapunov functional approach. IEEE Trans. Cybern. 45(4), 819–829 (2015)CrossRefGoogle Scholar
  41. 41.
    Wang, Z.-P., Wu, H.-N.: Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems. Inf. Sci. 327(10), 21–39 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Kim, D.W., Lee, H.J.: Direct discrete-time design approach to robust H∞ sampled-data observer-based output-feedback fuzzy control. Int. J. Syst. Sci. 47(1), 77–91 (2016)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Koo, G.B., Park, J.B., Joo, Y.H.: Intelligent digital redesign for non-linear systems: observer-based sampled-data fuzzy control approach. IET Control Theory Appl. 10(1), 1–9 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Li, Y.-M., Tong, S.-C., Li, T.-S.: Hybrid fuzzy adaptive output feedback control design for mimo time-varying delays uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. (2015). doi: 10.1109/TFUZZ.2015.2486811 Google Scholar
  45. 45.
    Kang, Y., Zhai, D.-H., Liu, G.-P., Zhao, Y.-B., Zhao, P.: Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching. IEEE Trans. Autom. Control 59(6), 1511–1523 (2014)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Liu, F., Wu, M., He, Y., Yokoyama, R.: New delay-dependent stability criteria for T–S fuzzy systems with time-varying delay. Fuzzy Sets Syst. 161(15), 2033–2042 (2010)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Cloosterman, M., van de Wouw, N., Heemels, W., Nijmeijer, H.: Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54(7), 1575–1580 (2009)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Petersen, I.R., Hollot, C.V.: A Riccati equation approach to the stabilization of uncertain linear systems. Automatica 22(4), 397–411 (1986)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhenbin Du
    • 1
  • Zhenkun Qin
    • 1
  • Hongjin Ren
    • 1
  • Zhuye Lu
    • 1
  1. 1.School of Computer and Control EngineeringYantai UniversityYantaiChina

Personalised recommendations