International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1464–1478 | Cite as

Gain Scheduling Technique using MIMO Type-2 Fuzzy Logic System for LFC in Restructure Power System

Article

Abstract

In this paper, a gain scheduling technique using type-2 fuzzy logic system has been proposed for load frequency control in restructure power system. For this purpose, at first the particle swarm optimization algorithm has been employed to obtain proportional-integral-derivative controller gains at some nominal operating points; then, a multi-input multi-output type-2 fuzzy logic system is trained in order to provide a general mapping between the operating points and the related proportional-integral-derivative gains. In addition, the same particle swarm optimization algorithm has been used to train the multi-input multi-output type-2 fuzzy logic system. In the online applications, the trained type-2 fuzzy logic system is able to infer the proportional-integral-derivative gains appropriately even in the presence of noise and uncertainties. So, the type-2 fuzzy logic system is exploited due to its ability to model uncertainties which may exist in the rules and measured data. To illustrate the effectiveness of the proposed strategy, the new controller has been compared with a type-1 fuzzy gain scheduling and the proportional-integral-derivative controllers.

Keywords

Load frequency control Type-2 fuzzy logic system Gain scheduling technique Restructure power system 

References

  1. 1.
    Saadat, H.: Power System Analysis. McGraw-Hill, New York (2002)Google Scholar
  2. 2.
    Kundur, P.: Power System Stability and Control. McGraw Hill, New York (1994)Google Scholar
  3. 3.
    Aldeen, M., Trinh, H.: Load-frequency control of interconnected power systems via constrained feedback control schemes. Comput. Electr. Eng. 20(1), 71–88 (1994)CrossRefMATHGoogle Scholar
  4. 4.
    Khodabakhshian, A., Hooshmand, R.: A new PID controller design for automatic generation control of hydro power systems. Int. J. Electr. Power Energy Syst. 32(5), 375–382 (2010)CrossRefGoogle Scholar
  5. 5.
    Tan, W.: Tuning of PID load frequency controller for power systems. Energy Convers. Manag. 50(6), 1465–1472 (2009)CrossRefGoogle Scholar
  6. 6.
    Pan, C.T., Liaw, C.M.: An adaptive controller for power system load-frequency control. IEEE Trans. Power Syst. 4(1), 122–128 (1989)CrossRefGoogle Scholar
  7. 7.
    Zribi, M., Al-Rashed, M., Alrifai, M.: Adaptive decentralized load frequency control of multi-area power systems. Electr. Power Energy Syst. 27(8), 575–583 (2005)CrossRefGoogle Scholar
  8. 8.
    Saha, N., Ghoshal, S.P.: State adaptive optimal generation control of energy system, Vol. 67, part EL-2, JIEE, India (1986)Google Scholar
  9. 9.
    Bevrani, H., Hiyama, T., Mitani, Y., Tsuji, K., Teshnehlab, M.: Load-frequency regulation under a bilateral LFC scheme using flexible neural networks. Eng. Intell. Syst. 2, 109–117 (2006)Google Scholar
  10. 10.
    Zeynelgil, H.L., Demiroren, A., Sengor, N.S.: The application of ANN technique to automatic generation control for multi-area power system. Electr. Power Energy Syst. 24, 345–354 (2002)CrossRefGoogle Scholar
  11. 11.
    Beaufays, F., Abdel-Magid, Y., Widrow, B.: Application of neural networks to load-frequency control in power systems. Neural Netw. 7(1), 183–194 (1994)CrossRefGoogle Scholar
  12. 12.
    Chaturvedi, D.K., Satsangi, P.S., Kalra, P.K.: Load frequency control – a generalized neural network approach. Electr. Power Energy Syst. 21, 405–415 (1999)CrossRefGoogle Scholar
  13. 13.
    Sabahi, K., Teshnehlab, M., Aliyari shoorhedeli, M.: Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system. Energy Convers. Manag. 50, 938–946 (2009)CrossRefGoogle Scholar
  14. 14.
    Yesil, E., Gouzelkaya, M., Eksin, I.: Self-tuning fuzzy PID type load and frequency controller. Energy Convers. Manag. 45, 377–390 (2004)CrossRefGoogle Scholar
  15. 15.
    Cam, E., Kocaarslan, I.: Load frequency control in two area power systems using fuzzy logic controller. Energy Convers. Manag. 46, 233–243 (2005)CrossRefGoogle Scholar
  16. 16.
    Kocaarslan, I., Cam, E.: Fuzzy logic controller in interconnected electrical power systems for load-frequency control. Electr. Power Energy Syst. 27, 542–549 (2005)CrossRefGoogle Scholar
  17. 17.
    Abdennour, A.: Adaptive Optimal Gain Scheduling for the Load Frequency Control Problem. Electr. Power Compon. Syst. 30, 45–56 (2002)CrossRefGoogle Scholar
  18. 18.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions. Prentice Hall, Upper Saddle River (2001)MATHGoogle Scholar
  19. 19.
    Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8, 535–550 (2000)CrossRefGoogle Scholar
  20. 20.
    Mendel, J.M., John, R., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14, 808–821 (2006)CrossRefGoogle Scholar
  21. 21.
    Sancheza, M.A., Castillo, O., Castro, J.R.: Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems. Expert Syst. Appl. 42(14), 5904–5914 (2015)CrossRefGoogle Scholar
  22. 22.
    Cervantes, L., Castillo, O.: Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control. Inf. Sci. 324, 247–256 (2015)CrossRefGoogle Scholar
  23. 23.
    Mendez, G.M., Castillo, O., Colas, R., Moreno, H.: Finishing mill strip gage setup and control by interval type-1 non-singleton type-2 fuzzy logic systems. Appl. Soft Comput. 24, 900–911 (2014)CrossRefGoogle Scholar
  24. 24.
    Sepúlveda, R., Montiel, O., Castillo, O., Melin, P.: Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA. Appl. Soft Comput. 12(3), 988–998 (2012)CrossRefGoogle Scholar
  25. 25.
    Montiel, O., Sepúlveda, R.: Evolving embedded fuzzy controllers. In: Springer Handbook of Computational Intelligence, pp. 1451–1477. Springer, New York (2015)Google Scholar
  26. 26.
    Melin, P., Astudillo, L., Castillo, O., Valdez, F., Garcia, M.: Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm. Expert Syst. Appl. 40(8), 3185–3195 (2013)CrossRefGoogle Scholar
  27. 27.
    Maldonado, Y., Castillo, O., Melin, P.: Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl. Soft Comput. 13(1), 496–508 (2013)CrossRefGoogle Scholar
  28. 28.
    Castillo, O., Melin, P., Garza, A.A., Montiel, O., Sepúlveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft. Comput. 15(6), 1145–1160 (2011)CrossRefGoogle Scholar
  29. 29.
    Almaraashi, M., John, R., Coupland, S.: Designing generalized type-2 fuzzy logic systems using interval type-2 fuzzy logic systems and simulated annealing. In: IEEE International Conference on Fuzzy System, Brisbane, 10–15 June (2012)Google Scholar
  30. 30.
    Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12(4), 1267–1278 (2012)CrossRefGoogle Scholar
  31. 31.
    Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19 (2012)CrossRefGoogle Scholar
  32. 32.
    Maldonado, Y., Castillo, O., Melin, P.: Particle Swarm Optimization for Average Approximation of Interval Type-2 Fuzzy Inference Systems Design in FPGAs for Real Applications. Recent Adv. Hybrid Intell. Syst. 451, 33–49 (2013)CrossRefGoogle Scholar
  33. 33.
    Hidalgo, D., Melin, P., Castillo, O.: An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst. Appl. 39(4), 4590–4598 (2012)CrossRefGoogle Scholar
  34. 34.
    Sudha, K.R., Santhi, R.V.: Robust decentralized load frequency control of interconnected power system with generation rate constraint using Type-2 fuzzy approach. Electr Power Energy Syst. 33, 699–707 (2011)CrossRefGoogle Scholar
  35. 35.
    Donde, V., Pai, M.A., Hiskens, I.A.: Simulation and optimization in an AGC system after deregulation. IEEE Trans Power Syst. 16(3), 481–489 (2001)CrossRefGoogle Scholar
  36. 36.
    Astrom, K.J., Wittenmark, B.: Computer Controlled Systems: Theory and Design. Prentice-Hall, Englewood Cliffs (1984)Google Scholar
  37. 37.
    Bhatt, P., Roy, R., Ghoshal, S.P.: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control. Int. J. Electr. Power Energy Syst. 32(4), 299–310 (2010)CrossRefGoogle Scholar
  38. 38.
    Ghoshal, S.P., Goswami, S.: Application of GA based optimal integral gains in fuzzy based active power-frequency control of non-reheat and reheat thermal generating systems. Electric Power Syst. Res. 67, 79–88 (2003)CrossRefGoogle Scholar
  39. 39.
    Khanesar, M.A., Teshnehlab, M., Kayacan E., Kaynak, O.: A novel type-2 fuzzy membership function: application to the prediction of noisy data. In: Computational Intelligence for Measurement Systems and Applications (CIMSA), 2010 IEEE International Conference on Sept 2010, Taranto, Italy, pp. 128–133 (2010)Google Scholar
  40. 40.
    Biglarbegian, M., Melek, W., Mendel, J.: Design of Novel Interval Type-2 Fuzzy Controllers for Modular and Reconfigurable Robots: theory and Experiments. Industrial Electronics”. IEEE Trans. Ind. Electron. 58(4), 1371–1384 (2011)CrossRefGoogle Scholar
  41. 41.
    Khanesar, M.A., Kayacan, E., Teshnehlab, M., Kaynak, O.: Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation. IEEE Trans. Ind. Electron. 59(11), 4443–4455 (2012)CrossRefGoogle Scholar
  42. 42.
    Schrieber, M.D., Biglarbegian, M.: Hardware implementation and performance comparison of interval typ-2 fuzzy logic controllers for real-time applications. Appl. Soft Comput. 32, 175–188 (2015)CrossRefGoogle Scholar
  43. 43.
    Sakai, S., Takahama, T.:Learning fuzzy control rules by vector simplex method. In: IFSA World Congress and 20th NAFIPS International Conference, vol. 5, pp. 2541–2546 (2001)Google Scholar
  44. 44.
    Shoorehdeli, M.A., Teshnehlab, M., Sedigh, A.K., Khanesar, M.A.: Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods. Appl. Soft Comput. 9(2), 833–850 (2009)CrossRefGoogle Scholar
  45. 45.
    Shoorehdeli, M.A., Teshnehlab, M., Sedigh, A.K.: Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Setsand Syst. 160(7), 922–948 (2009)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Hassan, T., Cohanim, B., Weck, O.D., Venter, G.: A comparison of particle swarm optimization and the genetic algorithm. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics, Austin, Texas, pp. 1–13 (2005)Google Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations