Advertisement

International Journal of Fuzzy Systems

, Volume 19, Issue 5, pp 1430–1443 | Cite as

Voltage-Base Control of Robot Manipulator Using Adaptive Fuzzy Sliding Mode Control

Article

Abstract

In this paper, a controller is proposed that is able to overcome existing structured and unstructured uncertainties in the dynamic equations of robot manipulator and its actuators. In this method, at first, through sliding mode control and by using defined dynamic equations of robot manipulator, robust nonlinear controller is designed that is capable of overcoming the existing uncertainties. In the following, due to incidence of the control input chattering, a first-order TSK fuzzy approximator is designed in such a way that is able to overcome undesirable chattering phenomenon. The presented fuzzy sliding mode control has a small number of calculations. However, the design structure of proposed control is in such a way that leads to increase the number of needed sensors for the practical implementation of this controller. Next, to overcome these problems, an adaptive fuzzy approximator is used to approximate the bounds of the existing uncertainties. The proposed adaptive fuzzy sliding mode control has low volume of calculations, and due to the use of single-input, single-output fuzzy rules in the adaptive fuzzy approximator, the problem of the increasing number of sensors is resolved. Mathematical proof investigates that a closed-loop system with the proposed control and in the presence of existing uncertainties in the dynamic equations of robot manipulator and its actuators has global asymptotic stability. Finally, to demonstrate the performance of the proposed controller, a two-link elbow robot manipulator is used as a case study. The simulation results show the favorable efficiency of the proposed controller.

Keywords

Robot manipulator Actuators Uncertainties Fuzzy sliding mode Adaptive fuzzy sliding mode 

References

  1. 1.
    Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. J. Dyn. Syst. Meas. Control 102(3), 119–125 (1981)CrossRefMATHGoogle Scholar
  2. 2.
    Arimoto, S., Miyazaki, F.: Asymptotic stability of feedback control for robot manipulators. Proc of IFAC Symposium on Robot Control Spa, pp. 447–452 (1985)Google Scholar
  3. 3.
    Parra-Vega, V., et al.: Dynamic sliding PID control for tracking of robot manipulators: theory and experiments. IEEE Trans. Robot. Autom. 19(6), 967–976 (2003)CrossRefGoogle Scholar
  4. 4.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, 1st edn. Wiley, New York (2006)Google Scholar
  5. 5.
    Moreno-Valenzuela, J., Santibáñez, V.: Robust saturated PI joint velocity control for robot manipulators. Asian J. Control 15(1), 64–79 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Paul, R.P.: Robot Manipulators, Mathematics, Programming and Control. MIT Press, Cambridge (1981)Google Scholar
  7. 7.
    Soltanpour, M.R., Fateh, M.M., Ahmadifard, A.R.: Nonlinear tracking control on a robot manipulator in the task space with uncertain dynamics. J. Appl. Sci. 8(23), 4397–4403 (2008)CrossRefGoogle Scholar
  8. 8.
    DeWit, C.C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, Berlin (2012)Google Scholar
  9. 9.
    Cai, L., Song, G.: Joint stick-slip friction compensation of robot manipulators by using smooth robust controllers. J. Robot. Syst. 11(6), 451–470 (1994)CrossRefMATHGoogle Scholar
  10. 10.
    Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11(2), 24–30 (1991)CrossRefMATHGoogle Scholar
  11. 11.
    Fateh, M.M., Khorashadizadeh, S.: Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn. 69(3), 1465–1477 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ngo, T.Q., et al.: Robust adaptive neural-fuzzy network tracking control for robot manipulator. Int. J. Comput. Commun. Control 7(2), 341–352 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Young, K.: Controller design for a manipulator using theory of variable structure system. IEEE Trans. Syst. Man Cybern. 8, 101–109 (1978)CrossRefMATHGoogle Scholar
  14. 14.
    Yeung, K.S., Chen, Y.P.: A new controller design for manipulators using the theory of variable structure systems. IEEE Trans. Autom. Control 33(2), 200–206 (1988)CrossRefMATHGoogle Scholar
  15. 15.
    Sira-Ramirez, H., Spong, M.W.: Variable structure control of flexible joint manipulators. Int. Robot. Autom. 3(2), 57–64 (1988)Google Scholar
  16. 16.
    Soltanpour, M.R.: Variable structure tracking control of robot manipulator in the task space in the presence of dynamic and kinematic uncertainties. J. Solid Fluid Mech. Shahrood Univ. Technol. 1(1), 81–88 (2012)Google Scholar
  17. 17.
    Veysi, M., Soltanpour, M.R.: Eliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic. J. Solid Fluid Mech. Shahrood Univ. Technol. 2(3), 45–54 (2012)Google Scholar
  18. 18.
    Veysi, M.: A new robust fuzzy sliding mode control of robot manipulator in the task space in presence of uncertainties. Int. J. Sci. Eng. Res. 6(6), 372–381 (2015)Google Scholar
  19. 19.
    Soltanpour, M.R., Khooban, M.H., Soltani, M.R.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(3), 433–446 (2014)CrossRefGoogle Scholar
  20. 20.
    Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Veysi, M., Soltanpour, M.R., Khooban, M.H.: A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space.”. Robotica 33, 1–20 (2014)Google Scholar
  22. 22.
    Yoo, B., Ham, W.: Adaptive fuzzy sliding mode control of nonlinear systems. IEEE Trans. Fuzzy Syst. 6(2), 315–321 (1998)CrossRefGoogle Scholar
  23. 23.
    Medhaffar, H., Derbel, N., Damak, T.: A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator. Int. J. Model. Ident. Control 1(1), 23–29 (2006)CrossRefGoogle Scholar
  24. 24.
    Wang, J., Rad, A.B., Chan, P.T.: Indirect adaptive fuzzy sliding mode control: part I: fuzzy switching. Fuzzy Sets Syst. 122(1), 21–30 (2001)CrossRefMATHGoogle Scholar
  25. 25.
    Yoo, B., Ham, W.: Adaptive control of robot manipulator using fuzzy compensator. IEEE Trans. Fuzzy Syst. 8(2), 186–199 (2000)CrossRefGoogle Scholar
  26. 26.
    Guo, Y., Woo, P.-Y.: An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(2), 149–159 (2003)CrossRefGoogle Scholar
  27. 27.
    Ho, H.F., Wong, Y.K., Rad, A.B.: Adaptive fuzzy sliding mode control design: Lyapunov approach. In: IEEE 5th Asian control conference, vol 3 (2004)Google Scholar
  28. 28.
    Wai, R.-J., Lin, C.-M., Hsu, C.-F.: Adaptive fuzzy sliding-mode control for electrical servo drive. Fuzzy Sets Syst. 143(2), 295–310 (2004)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tong, S.C., Li, H.X.: Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11(3), 354–360 (2003)CrossRefGoogle Scholar
  30. 30.
    Lin, C.-M., Hsu, C.-F.: Adaptive fuzzy sliding-mode control for induction servomotor systems. IEEE Trans. Energy Convers. 19(2), 362–368 (2004)CrossRefGoogle Scholar
  31. 31.
    Shahnazi, R., Shanechi, H.M., Pariz, N.: Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control. IEEE Trans. Energy Convers. 23(1), 138–147 (2008)CrossRefGoogle Scholar
  32. 32.
    Soltanpour, M.R., Otadolajam, P., Soltani, M.R.: Optimal adaptive fuzzy integral sliding model control for electrically driven SCARA robot manipulator. Modares J. Electr. Eng. 12(1), 33–50 (2015)Google Scholar
  33. 33.
    Benbrahim, M., Essounbouli, N., Hamzaoui, A., Betta, A.: Adaptive type-2 fuzzy sliding mode controller for SISO nonlinear systems subject to actuator faults. Int. J. Autom. Comput. 10(4), 335–342 (2013)CrossRefGoogle Scholar
  34. 34.
    Sharkawy, A.B., Salman, S.A.: An adaptive fuzzy sliding mode control scheme for robotic systems. Intell. Control Autom. 2(4), 299–309 (2011)CrossRefGoogle Scholar
  35. 35.
    Wang, Li-Xin: Adaptive Fuzzy Systems and Control: Design And Stability Analysis. Prentice-Hall, Upper Saddle River (1994)Google Scholar
  36. 36.
    Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control Autom. Syst. 6(5), 702–712 (2008)Google Scholar
  37. 37.
    Veysi, M.: Fuzzy sliding mode control of robot manipulator, based on voltage control. In: The International Conference in New Research of Electrical Engineering and Computer Science, Tehran, Iran (2015)Google Scholar
  38. 38.
    John, J.C.: Introduction to Robotics: Mechanics and Control. Addision-Wesley, Reading (2005)Google Scholar
  39. 39.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)MATHGoogle Scholar
  40. 40.
    Wang, L.X.: A Course in Fuzzy Systems. Prentice-Hall Press, New Jersey (1997)Google Scholar

Copyright information

© Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringKhatam ol Anbia UniversityTehranIran
  2. 2.Department of Electrical EngineeringShahid Sattari Aeronautical University of Science and TechnologyTehranIran

Personalised recommendations