Skip to main content
Log in

Voltage-Base Control of Robot Manipulator Using Adaptive Fuzzy Sliding Mode Control

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a controller is proposed that is able to overcome existing structured and unstructured uncertainties in the dynamic equations of robot manipulator and its actuators. In this method, at first, through sliding mode control and by using defined dynamic equations of robot manipulator, robust nonlinear controller is designed that is capable of overcoming the existing uncertainties. In the following, due to incidence of the control input chattering, a first-order TSK fuzzy approximator is designed in such a way that is able to overcome undesirable chattering phenomenon. The presented fuzzy sliding mode control has a small number of calculations. However, the design structure of proposed control is in such a way that leads to increase the number of needed sensors for the practical implementation of this controller. Next, to overcome these problems, an adaptive fuzzy approximator is used to approximate the bounds of the existing uncertainties. The proposed adaptive fuzzy sliding mode control has low volume of calculations, and due to the use of single-input, single-output fuzzy rules in the adaptive fuzzy approximator, the problem of the increasing number of sensors is resolved. Mathematical proof investigates that a closed-loop system with the proposed control and in the presence of existing uncertainties in the dynamic equations of robot manipulator and its actuators has global asymptotic stability. Finally, to demonstrate the performance of the proposed controller, a two-link elbow robot manipulator is used as a case study. The simulation results show the favorable efficiency of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. J. Dyn. Syst. Meas. Control 102(3), 119–125 (1981)

    Article  MATH  Google Scholar 

  2. Arimoto, S., Miyazaki, F.: Asymptotic stability of feedback control for robot manipulators. Proc of IFAC Symposium on Robot Control Spa, pp. 447–452 (1985)

  3. Parra-Vega, V., et al.: Dynamic sliding PID control for tracking of robot manipulators: theory and experiments. IEEE Trans. Robot. Autom. 19(6), 967–976 (2003)

    Article  Google Scholar 

  4. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, 1st edn. Wiley, New York (2006)

    Google Scholar 

  5. Moreno-Valenzuela, J., Santibáñez, V.: Robust saturated PI joint velocity control for robot manipulators. Asian J. Control 15(1), 64–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Paul, R.P.: Robot Manipulators, Mathematics, Programming and Control. MIT Press, Cambridge (1981)

    Google Scholar 

  7. Soltanpour, M.R., Fateh, M.M., Ahmadifard, A.R.: Nonlinear tracking control on a robot manipulator in the task space with uncertain dynamics. J. Appl. Sci. 8(23), 4397–4403 (2008)

    Article  Google Scholar 

  8. DeWit, C.C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, Berlin (2012)

    Google Scholar 

  9. Cai, L., Song, G.: Joint stick-slip friction compensation of robot manipulators by using smooth robust controllers. J. Robot. Syst. 11(6), 451–470 (1994)

    Article  MATH  Google Scholar 

  10. Abdallah, C., Dawson, D., Dorato, P., Jamshidi, M.: Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11(2), 24–30 (1991)

    Article  MATH  Google Scholar 

  11. Fateh, M.M., Khorashadizadeh, S.: Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dyn. 69(3), 1465–1477 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ngo, T.Q., et al.: Robust adaptive neural-fuzzy network tracking control for robot manipulator. Int. J. Comput. Commun. Control 7(2), 341–352 (2014)

    Article  MathSciNet  Google Scholar 

  13. Young, K.: Controller design for a manipulator using theory of variable structure system. IEEE Trans. Syst. Man Cybern. 8, 101–109 (1978)

    Article  MATH  Google Scholar 

  14. Yeung, K.S., Chen, Y.P.: A new controller design for manipulators using the theory of variable structure systems. IEEE Trans. Autom. Control 33(2), 200–206 (1988)

    Article  MATH  Google Scholar 

  15. Sira-Ramirez, H., Spong, M.W.: Variable structure control of flexible joint manipulators. Int. Robot. Autom. 3(2), 57–64 (1988)

    Google Scholar 

  16. Soltanpour, M.R.: Variable structure tracking control of robot manipulator in the task space in the presence of dynamic and kinematic uncertainties. J. Solid Fluid Mech. Shahrood Univ. Technol. 1(1), 81–88 (2012)

    Google Scholar 

  17. Veysi, M., Soltanpour, M.R.: Eliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic. J. Solid Fluid Mech. Shahrood Univ. Technol. 2(3), 45–54 (2012)

    Google Scholar 

  18. Veysi, M.: A new robust fuzzy sliding mode control of robot manipulator in the task space in presence of uncertainties. Int. J. Sci. Eng. Res. 6(6), 372–381 (2015)

    Google Scholar 

  19. Soltanpour, M.R., Khooban, M.H., Soltani, M.R.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(3), 433–446 (2014)

    Article  Google Scholar 

  20. Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Veysi, M., Soltanpour, M.R., Khooban, M.H.: A novel self-adaptive modified bat fuzzy sliding mode control of robot manipulator in presence of uncertainties in task space.”. Robotica 33, 1–20 (2014)

    Google Scholar 

  22. Yoo, B., Ham, W.: Adaptive fuzzy sliding mode control of nonlinear systems. IEEE Trans. Fuzzy Syst. 6(2), 315–321 (1998)

    Article  Google Scholar 

  23. Medhaffar, H., Derbel, N., Damak, T.: A decoupled fuzzy indirect adaptive sliding mode controller with application to robot manipulator. Int. J. Model. Ident. Control 1(1), 23–29 (2006)

    Article  Google Scholar 

  24. Wang, J., Rad, A.B., Chan, P.T.: Indirect adaptive fuzzy sliding mode control: part I: fuzzy switching. Fuzzy Sets Syst. 122(1), 21–30 (2001)

    Article  MATH  Google Scholar 

  25. Yoo, B., Ham, W.: Adaptive control of robot manipulator using fuzzy compensator. IEEE Trans. Fuzzy Syst. 8(2), 186–199 (2000)

    Article  Google Scholar 

  26. Guo, Y., Woo, P.-Y.: An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 33(2), 149–159 (2003)

    Article  Google Scholar 

  27. Ho, H.F., Wong, Y.K., Rad, A.B.: Adaptive fuzzy sliding mode control design: Lyapunov approach. In: IEEE 5th Asian control conference, vol 3 (2004)

  28. Wai, R.-J., Lin, C.-M., Hsu, C.-F.: Adaptive fuzzy sliding-mode control for electrical servo drive. Fuzzy Sets Syst. 143(2), 295–310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tong, S.C., Li, H.X.: Fuzzy adaptive sliding-mode control for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11(3), 354–360 (2003)

    Article  Google Scholar 

  30. Lin, C.-M., Hsu, C.-F.: Adaptive fuzzy sliding-mode control for induction servomotor systems. IEEE Trans. Energy Convers. 19(2), 362–368 (2004)

    Article  Google Scholar 

  31. Shahnazi, R., Shanechi, H.M., Pariz, N.: Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control. IEEE Trans. Energy Convers. 23(1), 138–147 (2008)

    Article  Google Scholar 

  32. Soltanpour, M.R., Otadolajam, P., Soltani, M.R.: Optimal adaptive fuzzy integral sliding model control for electrically driven SCARA robot manipulator. Modares J. Electr. Eng. 12(1), 33–50 (2015)

    Google Scholar 

  33. Benbrahim, M., Essounbouli, N., Hamzaoui, A., Betta, A.: Adaptive type-2 fuzzy sliding mode controller for SISO nonlinear systems subject to actuator faults. Int. J. Autom. Comput. 10(4), 335–342 (2013)

    Article  Google Scholar 

  34. Sharkawy, A.B., Salman, S.A.: An adaptive fuzzy sliding mode control scheme for robotic systems. Intell. Control Autom. 2(4), 299–309 (2011)

    Article  Google Scholar 

  35. Wang, Li-Xin: Adaptive Fuzzy Systems and Control: Design And Stability Analysis. Prentice-Hall, Upper Saddle River (1994)

    Google Scholar 

  36. Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control Autom. Syst. 6(5), 702–712 (2008)

    Google Scholar 

  37. Veysi, M.: Fuzzy sliding mode control of robot manipulator, based on voltage control. In: The International Conference in New Research of Electrical Engineering and Computer Science, Tehran, Iran (2015)

  38. John, J.C.: Introduction to Robotics: Mechanics and Control. Addision-Wesley, Reading (2005)

    Google Scholar 

  39. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  40. Wang, L.X.: A Course in Fuzzy Systems. Prentice-Hall Press, New Jersey (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Soltanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veysi, M., Soltanpour, M.R. Voltage-Base Control of Robot Manipulator Using Adaptive Fuzzy Sliding Mode Control. Int. J. Fuzzy Syst. 19, 1430–1443 (2017). https://doi.org/10.1007/s40815-016-0234-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0234-5

Keywords

Navigation