Skip to main content

Experimental Validation for Fuzzy Control of Servo Pneumatic Artificial Muscle Driven by Metal Hydride

Abstract

This paper presents the servo control problem of pneumatic artificial muscle (PAM) powered by hydrogen-based metal hydride (MH) for mechanical servo actuation. Under various operations of a servo PAM actuator driven by hydrogen-based MH, the desired task of actuator is changed following those various operations. A fuzzy adaptive proportional-integral-derivative (PID) controller is proposed to improve the dynamic performance requirements in both transient and steady-state responses. The fuzzy logic part of the proposed controller is employed to be better than a conventional PID for automatic online tuning of the parameters of PID gain under different operating conditions. The nonlinear mathematical model of PAM actuated by hydrogen-based MH is determined as the desired characteristics of closed-loop control for a fuzzy rule base. Position control is examined to illustrate the performance of the proposed controller. The results show that the proposed technique is more suitable and effective in the case of servo actuation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Caldwell, D.G., Tsagarakis, N., Artrit, P., Medrano-Cerda, G.A.: Bio-mimetic principles in actuator design for a humanoid robot. Eur. J Mech Environ Eng 44(2), 75–80 (1999)

    Google Scholar 

  2. Noritsugu, T., Yamamoto, H., Sasaki, D., Akaiwa, M.: Wearable power assist device for hand grasping using pneumatic artificial rubber muscle. In: Proceedings of Annual Conference of SICE, pp. 420–425 (2003)

  3. Klute, G. K., Czerniecki, J. M., Hannaford, B.: McKibben artificial muscle: pneumatic actuators with biomechanical intellignece. In: IEEE/ASME AIM 99, pp. 221–226, 19–22 Sept, Atlanta (1999). doi:10.1109/AIM.1999.803170

  4. Caldwell, D. G., Tsagarakis, N., Medrano-Cerda, G. A., Schofield, J., Brown, S.: Development of a Pneumatic muscle actuator driven manipulator rig for nuclear waste retrieval operations. In: IEEE Robotics and Automation Conference, vol. 1, pp. 525–530 (1999)

  5. Tondu, B., Lopez, P.: Theory of an artificial pneumatic muscle and application to the modelling of McKibben Artificial Muscle. CRAS Fr. Natl. Acad. Sci. 320, 105–114 (1996)

  6. Crishan, W.K., Leephakpreeda, T.: Study on mechanical behaviors of pneumatic artificial muscle. Int. J. Eng. Sci. 48(2), 188–198 (2010)

    Article  Google Scholar 

  7. Nuchkrua, T., Leephakpreeda, T., Mekarporn, T.: Development of robot hand with pneumatic artificial muscle for rehabilitation application. In: Proceedings of the 7th IEEE International Conference on Nano/Molecular Medicine and Engineering, pp. 55–58 (2013). doi:10.1109/NANOMED.2013.6766315

  8. Nuchkrua, T., Leephakpreeda, T.: Control of metal hydride reactor coupled with thermoelectric module via fuzzy adaptive PID controller. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2013)

  9. Wakisaka, Y., Muro, M., Kabutomori, T., Takeda, H., Shimizu, S., Ino, S., Ifukube, T.: Application of hydrogen absorbing alloys to medical ad rehabilitation equipment. IEEE Transact Rehabilitation Engineering. 5(2), 148–157 (1997)

    Article  Google Scholar 

  10. Sato, M., Ino, S.: Development of a soft metal hydride actuator using a laminate bellows for rehabilitation systems. Sens. Actuators B Chem. 136(1), 86–91 (2009)

    Article  Google Scholar 

  11. Vanderhoff, A., Kim, K.J.: Experimental study of a metal hydride driven braided artificial pneumatic muscle. Smart Mater. Struct. (2008). doi:10.1088/0964-1726/18/12/125014

    Google Scholar 

  12. Caldwell, D.G., Medrano-Cerda, G.A., Goodwin, M.J.: Control of pneumatic muscle actuators. IEEE Control Syst. Mag. 15(1), 40–48 (1995)

    Article  Google Scholar 

  13. Daerden, F., Lefeber, D., Verrelst, B., Van Ham, R.: Pleated pneumatic artificial muscles: actuators for automation and robotics. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2, pp. 738–743 (2001). doi:10.1109/AIM.2001.936758

  14. Yanbing, T., Xiaoxin, W.: Parameter self-tuning of PID in pneumatic artificial muscle joint based on PSO algorithm. In Proceedings of the 29th Chinese Control Conference (CCC 2010), pp. 3205–3208 (2010)

  15. Nuchkrua, T., Leephakpreeda, T.: Fuzzy self-tuning PID control of hydrogen-driven pneumatic artificial muscle actuator. J. Bionic Eng. 10(3), 329–340 (2013)

    Article  Google Scholar 

  16. Lin, C.M., Hsu, C.F., Chen, T.Y.: Adaptive fuzzy total sliding-mode control of unknown nonlinear systems. Int. J Fuzzy Syst. 14(3), 434–443 (2012)

    MathSciNet  Google Scholar 

  17. Pan, Y., Er, M.J., Huang, D., Sun, T.: Practical adaptive fuzzy Hinf tracking control of uncertain nonlinear systems. Int. J Fuzzy Syst. 14(4), 434–443 (2012)

    MathSciNet  Google Scholar 

  18. Juang, C.F., Lu, C.F.: Load-frequency control by hybrid evolutionary fuzzy PI controller. IEE Proc. Gener. Transm. Distrib. 153(2), 196–204 (2006)

    Article  Google Scholar 

  19. Ning S., Bone G.M.: High steady-state accuracy pneumatic servo positioning system with PVA/PV control and friction compensation. In: International Conference on Robotics and Automation, pp. 2824–2829, 11–15 May, Washington, DC (2002). doi:10.1109/ROBOT.2002.1013660

  20. Rao, Z., Bone, G.M.: Nonlinear modeling and control of servo pneumatic actuators. IEEE Trans. Control Syst. Technol. 16(3), 562–569 (2008)

    Article  Google Scholar 

  21. Gulati, N., Barth, E.J.: A globally stable, load- independent pressure observer for the servo control of pneumatic actuators. IEEE/ASME Trans. Mechatron. 14(3), 295–306 (2009)

    Article  Google Scholar 

  22. Rattan, K.B.: Trajectory tracking control of a pneumatic muscle system using fuzzy logic. In: Annual Conference of the North American Fuzzy Information Processing Society, pp. 472–477 (2005). doi:10.1109/NAFIPS.2005.1548581

  23. Veras, J.C.D.C., Vieira, D.A., Melo, E.C.S., Souza, C.P.: An automatic thermal cycling based test platform for thermoelectric generator testing. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pp. 1949–1953 (2015). doi:10.1109/I2MTC.2015.7151580

  24. Barako, M., Park, A., Asheghi, M., Goodson, K.E.: A reliability study with infrared imaging of thermoelectric modules under thermal cycling. In: 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 86–92, 30 May–1 June, San Diego, CA (2012). doi:10.1109/ITHERM.2012.6231417

  25. Jiang, J., Kaigala, G.V., Horacio, J.M., Christopher, J.B.: Nonlinear controller designs for thermal management in PCR amplification. IEEE Trans. Control Syst. Technol. 20(1), 11–30 (2012)

    Google Scholar 

  26. Xie, J., Zhao, S., Sha, Z., Liang, J.: Position servo control of the slider in double toggle mechanical press using Bezier curve model and fuzzy control. In: IEEE Conference on Automation Science and Engineering (CASE), pp. 773–778 (2011). doi:10.1109/CASE.2011.6042424

  27. Leephakpreeda, T., Wickramatunge, K.C.: Pneumatic artificial muscle actuation and modelling. IAENG Trans. Eng. Technol. 3, 282–296 (2009)

    Google Scholar 

  28. Zuttel, A.: Materials for hydrogen storage. Mater. Day 6, 24–33 (2003)

    Google Scholar 

  29. Zuttel, A.: Hydrogen in solids and the materials challenge for hydrogen storage. In: Invited talk, The 13th International Conference on Rapidly Quenched and Metastable Materials, Dresden, Germany (2008)

  30. Sandrock, G., Bowman, R.C.: Gas-based hydride applications: recent progress and future needs. J. Alloy. Compd. 356–357, 794–799 (2003)

    Article  Google Scholar 

  31. Jemini, N.S.: Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor. Int. J. Hydrogen Energy 20(1), 43–52 (2000)

    Article  Google Scholar 

  32. Leephakpreeda, T.: Experimental determination of thermoelectric-module parameters and modelling for cooling/heating control design. Exp. Tech. doi:10.1111/j.1747-1567.2011.00762.x

  33. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME. 64, 759–768 (1942)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanana Nuchkrua.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nuchkrua, T., Leephakpreeda, T. & Chen, SL. Experimental Validation for Fuzzy Control of Servo Pneumatic Artificial Muscle Driven by Metal Hydride. Int. J. Fuzzy Syst. 18, 956–970 (2016). https://doi.org/10.1007/s40815-016-0228-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0228-3

Keywords

  • Fuzzy control
  • Pneumatic artificial muscle
  • Metal hydride