Skip to main content

An Observer-Based Robust Fuzzy Stabilization Control Design for Switched Nonlinear Systems with Immeasurable Premise Variables

Abstract

This paper investigates the output feedback robust stabilization problem for a class of switched nonlinear fuzzy systems, in which the premise variables depend on the state variables and do not measured directly. A switched state observer is designed to obtain the estimation of the immeasurable states. By using the parallel distributed compensation (PDC) design method and the multiple Lyapunov function approach, an output feedback controller and the switching laws are developed. To obtain the feasible solutions of the control and observer gain matrixes, a novel decoupled method is proposed, and the sufficient conditions of guaranteeing the stability of the control system conditions can be transformed into some linear matrix inequalities (LMIs), which can be easily solved. Two simulation examples are provided to show the effectiveness of the suggested theoretical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Fuzzy Syst. 15(1), 116–132 (1985)

    MATH  Google Scholar 

  2. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  3. Feng, G., Chen, C.L., Song, D., Zhou, Y.: H controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions and bilinear matrix inequalities. IEEE Trans. Fuzzy Syst. 13(1), 94–103 (2003)

    Article  Google Scholar 

  4. Chen, B., Lin, C., Liu, X.P., Tong, S.C.: Guaranteed cost control of T–S fuzzy systems with input delay. Int. J. Robust Nonlinear Control 18(12), 1230–1256 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  5. Li, H., Wang, J., Lam, H.K., Zhou, Q., Du, H.: Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. (2016). doi:10.1109/TSMC.2016.2531676

    Google Scholar 

  6. Guo, S.H., Zhu, F.L., Xu, L.Y.: Unknown input observer design for Takagi-Sugeno fuzzy stochastic system. Int. J. Control Autom. Syst. 13(4), 1003–1009 (2015)

    Article  Google Scholar 

  7. Sung, H.C., Park, J.B., Joo, Y.H.: Robust observer-based fuzzy control for variable speed wind power system: LMI approach. Int. J. Control Autom. Syst. 9(6), 1103–1110 (2011)

    Article  Google Scholar 

  8. Kim, S.H.: T–S fuzzy control design for a class of nonlinear networked control systems. Nonlinear Dyn. 73(1–2), 17–27 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  9. Lee, D., Joo, Y.H., Ra, I.H.: Local stability and local stabilization of discrete-time T–S fuzzy systems with time-delay. Int. J. Control Autom. Syst. 14(1), 29–38 (2016)

    Article  Google Scholar 

  10. Zheng, I.L., Wang, X.Y., Yin, Y.F., Hu, L.L.: Stability analysis and constrained fuzzy tracking control of positive nonlinear systems. Nonlinear Dyn. 83(4), 2509–2522 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  11. Klug, M., Castelan, E.B., Coutinho, D.: A T–S fuzzy approach to the local stabilization of nonlinear discrete-time systems subject to energy-bounded disturbances. J. Control Autom. Electr. Syst. 26(3), 191–200 (2015)

    Article  Google Scholar 

  12. Li, H., Chen, Z., Wu, L., Lam, H.K., Du, H.: Event-triggered fault detection of nonlinear networked systems. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2016.2536750

    Google Scholar 

  13. Lian, Z., He, Y., Zhang, C.K., Wu, M.: Stability analysis for T–S fuzzy systems with time-varying delay via free-matrix-based integral inequality. Int. J. Control Autom. Syst. 14(1), 21–28 (2016)

    Article  Google Scholar 

  14. Chen, B., Liu, X., Lin, C., Liu, K.: Robust H control of Takagi–Sugeno fuzzy systems with state and input time delays. Fuzzy Sets Syst. 160(4), 403–422 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  15. Chang, X.H., Yang, G.H.: Relaxed stability condition and state feedback H controller design for T–S fuzzy systems. Int. J. Control Autom. Syst. 7(1), 139–144 (2009)

    Article  Google Scholar 

  16. Lee, D.H., Joo, Y.H., Tak, M.H.: LMI conditions for local stability and stabilization of continuous-time T–S fuzzy systems. Int. J. Control Autom. Syst. 13(4), 986–994 (2015)

    Article  Google Scholar 

  17. Asemani, M.H., Yazdanpanah, M.J., Majd, V.J., Golabi, A.: H control of T–S fuzzy singularly perturbed systems using multiple Lyapunov functions. Circuits Syst. Signal Process. 32(5), 2243–2266 (2013)

    MathSciNet  Article  Google Scholar 

  18. Yang, J., Luo, W.P., Wang, Y.H., Duan, C.S.: Improved stability criteria for T–S fuzzy systems with time-varying delay by delay-partitioning approach. Int. J. Control Autom. Syst. 13(6), 1521–1529 (2015)

    Article  Google Scholar 

  19. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. 19(5), 59–70 (1999)

    Article  Google Scholar 

  20. Li, Y., Sui, S., Tong, S.C.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans Cybern. doi: 10.1109/TCYB.2016.2518300

  21. Li, Y., Tong, S.C.: Adaptive fuzzy output-feedback stabilization control for a class of switched non-strict-feedback nonlinear systems. IEEE Trans Cybern. doi:10.1109/TCYB.2016.2536628

  22. Liberzon, D.: Switching in Systems and Control. Springer, Berlin (2012)

    MATH  Google Scholar 

  23. Yang, H., Jiang, B., Cocquempot, V.: A fault tolerant control framework for periodic switched non-linear systems. Int. J. Control 46(4), 117–129 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  24. Wu, L.G., Wang, Z.D.: Guaranteed cost control of switched systems with neutral delay via dynamic output feedback. Int. J. Syst. Sci. 40(7), 717–728 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  25. Yang, H., Jiang, B., Cocquempot, V., Zhang, H.G.: Stabilization of switched nonlinear systems with all unstable modes: application to multi-agent systems. IEEE Trans. Autom. Control 56(9), 2230–2235 (2011)

    MathSciNet  Article  Google Scholar 

  26. Chiou, J.S.: Stability analysis for a class of switched large-scale time-delay systems via time-switched method. IEE Proc. Control Theory Appl. 153(6), 684–688 (2006)

    MathSciNet  Article  Google Scholar 

  27. Wang, T.C., Tong, S.C.: H control design for discrete-time switched fuzzy systems. Neurocomputing 151, 184–188 (2007)

    Google Scholar 

  28. Ou, O., Mao, Y.B., Zhang, H.B., Zhang, L.L.: Robust H control of a class of switching nonlinear systems with time-varying delay via T–S fuzzy model. Circuits Syst. Signal Process. 33(5), 1411–1437 (2014)

    MathSciNet  Article  Google Scholar 

  29. Wu, L.G., Lam, J.: Sliding mode control of switched hybrid systems with time-varying delay. Int. J. Adapt. Control Signal Process. 22(10), 909–931 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  30. Yang, H., Zhao, J.: Robust control for a class of uncertain switched fuzzy systems. Control Theory Technol. 5(2), 184–188 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  31. Jabri, D., Guelton, K., Manamanni, N., Jaadari, A., Chinh, C.D.: Robust stabilization of nonlinear systems based on a switched fuzzy control law. Control Eng. Appl. Informat. 14(2), 40–49 (2012)

    Google Scholar 

  32. Lian, J., Ge, Y.L., Han, M.: Stabilization for switched stochastic neutral systems under asynchronous switching. Inf. Sci. 222, 501–508 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  33. Lian, J., Mu, C., Shi, P.: Asynchronous H filtering for switched stochastic systems with time-varying delay. Inf. Sci. 224, 200–212 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  34. Tseng, C.S.: A novel approach to H decentralized fuzzy observer-based fuzzy control design for nonlinear interconnected systems. IEEE Trans. Fuzzy Syst. 16(5), 1337–1350 (2008)

    Article  Google Scholar 

  35. Yang, W., Tong, S.C.: Robust stabilization of switched fuzzy systems with actuator dead zone. Neurocomputing 173, 1028–1033 (2016)

    Article  Google Scholar 

  36. Koo, G.B., Park, J.B., Joo, Y.H.: Decentralized fuzzy observer-based output-feedback control for nonlinear large-scale systems: an LMI approach. IEEE Trans. Fuzzy Syst. 22(2), 406–419 (2014)

    Article  Google Scholar 

  37. Tseng, C.S., Chen, B.S.: Robust fuzzy observer-based fuzzy control design for nonlinear discrete-time systems with persistent bounded disturbances. IEEE Trans. Fuzzy Syst. 17(3), 711–723 (2009)

    MathSciNet  Article  Google Scholar 

  38. Xie, L.: Output feedback H control of systems with parameter uncertainty. Int. J. Control 63(4), 741–750 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  39. Liu, Y. Dimirovski, G.M., Zhao, J.: Robust output feedback control for a class of uncertain switching fuzzy systems. In: Proceedings of the 17th IFAC World Congress, pp. 4773–4778 (2006)

  40. Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(2), 153–167 (2000)

    Google Scholar 

  41. Yang, W., Tong, S.C.: Output feedback robust stabilization of switched fuzzy systems with time-delay and actuator saturation. Neurocomputing 164, 173–181 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 61374113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaocheng Tong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Tong, S. An Observer-Based Robust Fuzzy Stabilization Control Design for Switched Nonlinear Systems with Immeasurable Premise Variables. Int. J. Fuzzy Syst. 18, 1019–1030 (2016). https://doi.org/10.1007/s40815-016-0202-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0202-0

Keywords

  • Switched fuzzy observer
  • Switched fuzzy controller
  • Switched systems
  • Linear matrix inequality (LMI)