Skip to main content
Log in

Fuzzy-Based Optimized QoS-Constrained Resource Allocation in a Heterogeneous Wireless Network

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A new joint scheduling and link adaptation scheme is designed using fuzzy logic. A unified scheduler is designed which provides different throughput requirements and optimally allocates the shared media to the users based on their importance. Adaptive modulation, coding, and transmit power is used provisioning an average power constraint depending on each user’s power supply. Various bit error rate and QoS-delay constraints are provided for all links. Numerical evaluations show that the proposed fuzzy-based scheme has the performance quite close to the analytical approach, however, with substantially lower complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song, G., Ye, L., Cimini, L.J.: Joint channel- and queue-aware scheduling for multiuser diversity in wireless OFDMA networks. IEEE Trans. Wireless Commun. 57(7), 2109–2121 (2009)

    Article  Google Scholar 

  2. Elliott, R.C., Krzymien, W.A.: Downlink scheduling via genetic algorithms for multiuser single-carrier and multicarrier MIMO systems with dirty paper coding. IEEE Trans. Veh. Technol. 58(7), 3247–3262 (2009)

    Article  Google Scholar 

  3. Karaca, M., Khalil, K., Ekici, E., Ercetin, O.: Optimal scheduling and power allocation in cooperate-to-join cognitive radio networks. IEEE/ACM Trans. Netw. 21(6), 1708–1721 (2013)

    Article  Google Scholar 

  4. Lau, V.K.N., Yu-Kwong, K.: Performance analysis of SIMO space-time scheduling with convex utility function: zero-forcing linear processing. IEEE Trans. Veh. Technol. 53(2), 339–350 (2004)

    Article  Google Scholar 

  5. Song, G., Ye, L.: Utility-based resource allocation and scheduling in OFDM-based wireless broadband networks. Commun. Mag. IEEE 43(12), 127–134 (2005)

    Article  Google Scholar 

  6. Longbo, H., Neely, M.J.: Utility optimal scheduling in energy-harvesting networks. IEEE Trans. Netw. 21(4), 1117–1130 (2013)

    Article  Google Scholar 

  7. Neely, M. J.: Super-fast delay tradeoffs for utility optimal fair scheduling in wireless networks. IEEE Trans. INFOCOM Comput. Commun. Proc., pp. 1–13 (2006)

  8. Bin, W., Dongmei, Z.: Scheduling for long term proportional fairness in a cognitive wireless network with spectrum underlay. IEEE Trans. Wireless Commun. 9(3), 1150–1158 (2010)

    Article  Google Scholar 

  9. Binglai, N., Wong, V.W.S., Schober, R.: Downlink scheduling with transmission strategy selection for multi-cell MIMO systems. IEEE Trans. Wireless Commun. 12(2), 736–747 (2013)

    Article  Google Scholar 

  10. Lau, K.N.: Analytical framework for multiuser uplink MIMO space-time scheduling design with convex utility functions. IEEE Trans. Wireless Commun. 3(5), 1832–1843 (2004)

    Article  Google Scholar 

  11. Shen, S., Chang, C.J., Wang, L.C.: A Cellular neural network and utility-based radio resource scheduler for multimedia CDMA communication systems. IEEE Trans. Wireless Commun. 8(11), 5508–5519 (2009)

    Article  Google Scholar 

  12. Jiang, Z., Ge, Y., Ye, L.: Max-utility wireless resource management for best-effort traffic. IEEE Trans. Wireless Commun. 4(1), 100–111 (2005)

    Article  Google Scholar 

  13. Li, P., Wu, H., Ravindran, B., Douglas Jensen, E.: A utility accrual scheduling algorithm for real-time activities with mutual exclusion resource constraints. IEEE Trans. Comput. 55(4), 454–469 (2006)

    Article  Google Scholar 

  14. Andrews, M., Borst, S., Dominique, F., Jelenkovic, P., Kumaran, K., Ramakrishnan K., Whiting, P.: Dynamic bandwidth allocation algorithms for high-speed data wireless networks. Bell Labs Technical Memorandum (2000)

  15. Shakkottai, S., Stolyar, A.L.: Scheduling for multiple flows sharing a time-varying channel: the exponential rule. Anal. Methods Appl. Probab. 207, 185–202 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, S.T., Goldsmith, A.J.: Degrees of freedom in adaptive modulation: a unified view. IEEE Trans. Commun. 49(9), 1561–1571 (2001)

    Article  MATH  Google Scholar 

  17. Hole, K.J., Holm, H., Øien, G.E.: Adaptive multidimensional coded modulation over flat fading channels. IEEE J. Sel. Areas Commun. 18, 1153–1158 (2000)

    Article  Google Scholar 

  18. Khojastepour, M.A., Sabharwal, A.: Delay-constrained scheduling: power efficiency, filter design, and bounds. IEEE Trans. INFOCOM 2004(3), 1938–1949 (2004)

    Google Scholar 

  19. Lee, J., Jindal, N.: Energy-efficient scheduling of delay constrained traffic over fading channels. IEEE Trans. Wireless Commun. 8(4), 1866–1875 (2009)

    Article  Google Scholar 

  20. Wolkerstorfer, M., Nordstrom, T., Statovci, D.: Delay-constrained scheduling for interference-limited multi-carrier systems. IWCLD, pp. 1–5 (2009)

  21. Haibao, R., Ming, Z., Wuyang, Z., Jinkang, Z.: Energy-efficient scheduling of delay constrained traffic under practical power model. WCNCW, pp. 30–34 (2013)

  22. Xu, J., Shen, X., Mark, J.W., Cai, J.: Adaptive transmission of multi-layered video over wireless fading channels. IEEE Trans. Wireless Commun. 6(5), 1–10 (2007)

    Article  Google Scholar 

  23. Wu, D., Negi, R.: Effective capacity: a wireless link model for support of quality of service. IEEE Trans. Wireless Commun. 2(4), 630–643 (2003)

    Google Scholar 

  24. Tang, J., Zhang, X.: Quality-of-service driven power and rate adaptation over wireless links. IEEE Trans. Wireless Commun. 6(8), 3058–3068 (2007)

    Article  Google Scholar 

  25. Lin, Y., Alouini, M.-S.: Performance analysis of multiuser selection diversity. IEEE Trans. Veh. Technol. 55(6), 1848–1861 (2006)

    Article  Google Scholar 

  26. Fathi, M., Taheri, H.: Utility-based resource allocation in orthogonal frequency division multiple access networks. IET Commun. 4(12), 1463–1470 (2010)

    Article  Google Scholar 

  27. Fathi, M., Taheri, H., Mehrjoo, M.: Utility maximization in channel-aware and queue-aware orthogonal frequency division multiple access scheduling based on arrival rate control. IET Commun. 6(2), 235–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Subramanian, V.G., Berry, R.A., Rajeev, A.: Joint scheduling and resource allocation in CDMA systems. IEEE Trans. Inf. Theory 56(5), 2416–2432 (2010)

    Article  MathSciNet  Google Scholar 

  29. Huang, J., Subramanian, V.G., Agrawal, R., Berry, R.: Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks. IEEE J. Sel. Areas Commun. 27(2), 226–234 (2009)

    Article  Google Scholar 

  30. Kelly, F.: Charging and rate control for elastic traffic. Eur. Trans. Telecommun. 8, 33–37 (1997)

    Article  Google Scholar 

  31. M. Taki, Lahouti, F.: A framework for integrated discrete-rate and power adaptation and user selection in heterogeneous wireless networks. Wireless Adv. (WiAd), pp. 252–257, 20–22 Jun (2011)

  32. Gyasi-Agyei, A., Seong-Lyun, K.: Comparison of opportunistic scheduling policies in time-slotted AMC wireless networks. Wireless Pervasive Computing, 2006 1st International Symposium on, p. 6, 16–18 Jan, 2006

  33. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kosko, B.: Neural Networks and Fuzzy Systems. A Dynamic Systems Approach to Machine Intelligence. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  35. Sasikala, A., Rengarajan, E.: An intelligent technique to detect jamming attack in wireless sensor networks. Int. J. Fuzzy Syst. (2015)

  36. Zhang, L., Wang, Y., Wang, Q.: Adaptive fuzzy synchronization for uncertain chaotic systems with different dimensions and disturbances. Int. J. Fuzzy Syst. (2015)

  37. Lin, T., Huang, F.-Y., Du, Z., Lin, Y.-C.: Synchronization of fuzzy modeling chaotic time delay memristor-based Chua’s circuits with application to secure communication. Int. J. Fuzzy Syst. (2015)

  38. Krunz, M.M., Kim, J.G.: Fluid analysis of delay and packet discard performance for QoS support in wireless networks. IEEE J. Sel. Areas Commun. 19(2), 384–395 (2001)

    Article  Google Scholar 

  39. Taki, M.: Delay constrained throughput optimised joint scheduling and link adaptation scheme based on imperfect CSI. To appear in IET Communications

  40. Nocedal, J.: Wright SJ (2006) Numerical optimisation, vol. 2. Springer, New York (2006)

    Google Scholar 

  41. IEEE Std. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 802.11a-1999 (1999)

  42. ETSI: Digital Video Broadcasting (DVB) Second generation framing structure for broadband satellite applications, EN 302 307 V1.1.1. (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Taki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taki, M., Heshmati, M. & Omid, Y. Fuzzy-Based Optimized QoS-Constrained Resource Allocation in a Heterogeneous Wireless Network. Int. J. Fuzzy Syst. 18, 1131–1140 (2016). https://doi.org/10.1007/s40815-016-0152-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0152-6

Keywords

Navigation