Skip to main content
Log in

Adaptive Neuro-Fuzzy Model for Grid-Connected Photovoltaic System

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposed an adaptive neuro-fuzzy inference system (ANFIS) model to multilevel inverter for grid-connected photovoltaic (PV) system. The purpose of the proposed controller is to avoid the requirement of any optimal PWM (pulse width-modulated) switching-angle generator and proportional–integral controller. The proposed method strictly prevents the variations present in the output voltage of the cascaded H-bridge multilevel inverter. Here, the ANFIS models have the inputs which are the grid voltage and the difference voltage, and the output target is the control voltage. By means of these parameters, the ANFIS makes the rules and can be tuned perfectly. During the testing time, the ANFIS provides the control voltage according to the different inputs. Then, the ANFIS-based algorithm for multilevel inverter for grid-connected PV system is implemented in the MATLAB/simulink platform, and the effectiveness of the proposed control technique is analyzed by comparing the model’s performances with the neural network, fuzzy logic control, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ueda, Y., Kurokawa, K., Tanabe, T., Kitamura, K., Sugihara, H.: Analysis results of output power loss due to the grid voltage rise in grid-connected photovoltaic power generation systems. IEEE Trans. Power Electron. 55(7), 2744–2751 (2008)

    Google Scholar 

  2. Liserre, M., Sauter, T., Hung, J.Y.: Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind. Electron. Mag. 4(1), 18–37 (2010)

    Article  Google Scholar 

  3. Seme, S., Stumberger G., Vorsic, J. Operational properties of a photovoltaic system with three single phase inverters. In; International Conference on Renewable Energies and Power Quality, pp. 1–4 (2010)

  4. Koutroulis, E., Kalaitzakis, K., Voulgaris, N.C.: Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Trans. Power Electron. 16(1), 46–54 (2001)

    Article  Google Scholar 

  5. Houssamo, I., Locment, F., Sechilariu, M.: Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms. Renew. Energy 35(10), 2381–2387 (2010)

    Article  Google Scholar 

  6. Altas, I.H., Sharaf, A.M.: A novel maximum power fuzzy logic controller for photovoltaic solar energy systems. Renew. Energy 33, 388–399 (2008)

    Article  Google Scholar 

  7. Syafaruddin, Karatepe, E., Hiyama, T.: Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system. Renew. Energy 34(12), 2597–2606 (2009)

    Article  Google Scholar 

  8. Larbes, C., Cheikh, S.M.A., Obeidi, T., Zerguerras, A.: Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew. Energy 34(10), 2093–2100 (2009)

    Article  Google Scholar 

  9. Tafticht, T., Agbossou, K., Doumbia, M.L., Cheriti, A.: An improved maximum power point tracking method for photovoltaic systems. Renew. Energy 33(7), 1508–1516 (2008)

    Article  Google Scholar 

  10. Chaouachi, A., Kamel, R.M., Nagasaka, K.: A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system. Sol. Energy 84(12), 2219–2229 (2010)

    Article  Google Scholar 

  11. Hamrouni, N., Jraidi, M., Cherif, A.: New control strategy for 2-stage grid-connected photovoltaic power system. Renew. Energy 33(10), 2212–2221 (2008)

    Article  Google Scholar 

  12. Hu, J., Shang, L., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of grid-connected DC/AC Converters using sliding mode control approach. IEEE Trans. Power Electron. 26(1), 210–222 (2011)

    Article  Google Scholar 

  13. Shen, Ke, Zhao, Dan, Mei, Jun, Tolbert, L.M., Wang, J., Ban, M., Cai, X., Ji, Y.: Elimination of harmonics in a modular multilevel converter using particle swarm optimization-based staircase modulation strategy. IEEE Trans. Ind. Electron. 61(10), 5311–5322 (2014)

    Article  Google Scholar 

  14. Fernao Pires, V., Martins, J.F., Foito, D., Chen, H.: A grid connected photovoltaic system with a multilevel inverter and a Le-Blanc Transformer. Int. J. Renew. Energy Res. 2(1), 84–91 (2012)

    Google Scholar 

  15. Rahim, N.A., Selvaraj, J., Krismadinata, C.: Five-level inverter with dual reference modulation technique for grid-connected PV system. Renew. Energy 35(3), 712–720 (2010)

    Article  Google Scholar 

  16. Corzine, K.A., Baker, J.R.: Multilevel voltage-source duty-cycle modulation: analysis and implementation. IEEE Trans. Ind. Electron. 49(5), 1009–1016 (2002)

    Article  Google Scholar 

  17. Mattavelli, P., Rossetto, L., Spiazzi, G., Tenti, P. General-purpose fuzzy controller for dc–dc converters. In: Proceedings of IEEE Applied Power Electronics Conference and Exposition, pp. 723–730 (1995)

  18. Lopez, O., Alvarez, J., Doval-Gandoy, J., Freijedo, F.D.: Multilevel multiphase space vector PWM algorithm. IEEE Trans. Ind. Electron. 55(5), 1933–1942 (2008)

    Article  Google Scholar 

  19. Chiasson, J., Tolbert, L.M., Mckenzie, K.J., Du, Z.: Control of a multilevel converter using resultant theory. IEEE Trans. Control Syst. Technol. 11(3), 345–354 (2003)

    Article  MathSciNet  Google Scholar 

  20. Saetieo, S., Torrey, D.A. Fuzzy logic control of a space vector PWM current regulator for three-phase power converters. In: Proceedings of IEEE Applied Power Electronics Conference, pp. 879–885 (1997)

  21. Cecati, C., Ciancetta, F., Siano, P.: A multilevel inverter for photovoltaic systems with fuzzy logic control. IEEE Trans. Ind. Electr. 57(12), 4115–4125 (2010)

    Article  Google Scholar 

  22. Seyezhai, R., Kalpana, B., Vasanthi, J.: Design and development of hybrid multilevel inverter employing dual reference modulation technique for fuel cell applications. Int. J. Power Electr. Drive Syst. 1(2), 104–112 (2011)

    Google Scholar 

  23. Chandralekha, R., Shasikala, G., Sasikala, C.: Modeling and analysis of hybrid power systems with power converters. Int. J. Adv. Eng. Sci. Technol. 24, 18–22 (2014)

    Google Scholar 

  24. Kirupakaran, S., Manikanda Prabhu, B.S.: Implementation of new single phase multilevel inverter for PV power conditioning system. Int. J. Technol Eng. Syst. 5(1), 41–44 (2013)

    Google Scholar 

  25. Raghu, M., Goutham, V., Venu Gopala Rao, M.: Control of a three-phase cascaded h-bridge multilevel inverter for stand-alone PV System. Int. J. Modern Eng. Res. 2(2), 278–282 (2012)

    Google Scholar 

  26. Valan Rajkumar, M., Manoharan, P.S.: FPGA based multilevel cascaded inverters with SVPWM algorithm for photovoltaic system. Sol. Energy 87, 229–245 (2013)

    Article  Google Scholar 

  27. Krismadinata, C., Rahim, N.A., Ping, H.W., Selvaraj, J.: Elimination of harmonics in photovoltaic seven-level inverter with Newton–Raphson optimization. Proc. Environ. Sci. 17, 519–528 (2013)

    Article  Google Scholar 

  28. Sumithira, T.R., Nirmal Kumar, A.: Elimination of harmonics in multilevel inverters connected to solar photovoltaic systems using ANFIS: an experimental case study. J. Appl. Res. Technol. 11, 124–132 (2013)

    Article  Google Scholar 

  29. Hsu, W.-Y.: Motor imagery electroencephalogram analysis using adaptive neural-fuzzy classification. Int. J. Fuzzy Syst. 16(1), 111–120 (2014)

    Google Scholar 

  30. Mora, J.J., Carrillo, G., Perez, L. Fault location in power distribution systems using ANFIS nets and current patterns. In: Transmission and Distribution Conference and Exposition Latin America, pp. 1–6, 2006

  31. Buticchi, G., Barater, D., Lorenzani, E., Concari, C., Franceschini, G.: A nine-level grid-connected converter topology for single-phase transformerless PV systems. IEEE Trans. Ind. Electron. 61(8), 3951–3960 (2014)

    Article  Google Scholar 

  32. Filho, F., Maia, H.Z., Mateus, T.H.A., Ozpineci, B., Tolbert, L.M., Pinto, J.O.P.: Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying DC sources. IEEE Trans. Ind. Electron. 60(5), 1955–1962 (2013)

    Article  Google Scholar 

  33. Shanthi, B., Natarajan, S.P.: FPGA based fuzzy logic control for single phase multilevel inverter. Int. J. Comput. Appl. 9(3), 10–18 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Logeswaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logeswaran, T., Senthilkumar, A. & Karuppusamy, P. Adaptive Neuro-Fuzzy Model for Grid-Connected Photovoltaic System. Int. J. Fuzzy Syst. 17, 585–594 (2015). https://doi.org/10.1007/s40815-015-0078-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0078-4

Keywords

Navigation