Skip to main content

Advertisement

Log in

Kernel-based Fuzzy-rough Nearest-neighbour Classification for Mammographic Risk Analysis

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Mammographic risk analysis is an important task for assessing the likelihood of a woman developing breast cancer. It has attracted much attention in recent years as it can be used as an early risk indicator when screening patients. In this paper, a kernel-based fuzzy-rough nearest-neighbour approach to classification is employed to address the issue of the assessment of mammographic risk. Four different breast tissue density assessment metrics are employed to support this study, and the performance of the proposed approach is compared with alternative nearest-neighbour-based classifiers and other popular learning classification techniques. Systematic experimental results show that the work employed here generally improves the classification performance over the others, measured using criteria such as classification accuracy rate, root mean squared error and the kappa statistics. This demonstrates the potential of kernel-based fuzzy-rough nearest-neighbour classification as a robust and reliable tool for mammographic risk analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The relevant WEKA software can be download from https://dl.dropboxusercontent.com/u/2043486/weka.jar.

References

  1. World Health Organization, “Breast cancer: prevention and control,” from: http://www.who.int/cancer/detection/breastcancer/en/. Accessed Aug 2014

  2. World Cancer Research Fund International, “Breast cancer,” from: http://www.wcrf.org/cancer _statistics/data_specific_cancers/breast_cancer_statistics.php. Accessed Aug 2014

  3. World Health Organization, International Agency for Research on Cancer. “Latest world cancer statistics: Global cancer burden rises to 14.1 million new cases in 2012: Marked increase in breast cancers must be addressed,” from: www.iarc.fr/en/media-centre/pr/2013/pdfs/pr223_E.pdf, Accessed Aug 2014

  4. Tortajada, M., Oliver, A., Martí, R., Ganau, S., Tortajada, L., Sentís, M., Freixenet, J., Zwiggelaar, R.: Breast peripheral area correction in digital mammograms. Comput. Biol. Med. 50, 32–40 (2014)

    Article  Google Scholar 

  5. Tesic, V., Kolaric, B., Znaor, A., Kuna, S.K., Brkljacic, B.: Mammographic density and estimation of breast cancer risk in intermediate risk population. Breast J. 19(1), 71–78 (2013)

    Article  Google Scholar 

  6. Wang, A., Vachon, C., Brandt, K., Ghosh, K.: Breast density and breast cancer risk: a practical review. Mayo Clin. Proc. 89(4), 548–557 (2014)

    Article  Google Scholar 

  7. Qu, Y., Shang, C., Wu, W., Shen, Q.: Evolutionary fuzzy extreme learning machine for mammographic risk analysis. Int. J. Fuzzy Syst. 13(4), 282–291 (2011)

    MathSciNet  Google Scholar 

  8. Strange, H., Chen, Z., Denton, E., Zwiggelaar, R.: Modelling mammographic microcalcification clusters using persistent mereotopology. Pattern Recogn. Lett. 47, 157–163 (2014)

    Article  Google Scholar 

  9. He, W., Denton, E., Zwiggelaar, R.: A study on mammographic image modelling and classification using multiple databases, in Breast Imaging, pp. 696–701 (2014)

  10. Pfeiffer, P.: Concepts of Probability Theory. Courier Dover Publications, Mineola (2013)

    Google Scholar 

  11. Neapolitan, R.: Probabilistic reasoning in expert systems: theory and algorithms, Create Space Independent Publishing Platform (2012)

  12. Han, B., Davis, L.: Density-based multifeature background subtraction with support vector machine. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 1017–1023 (2012)

    Article  Google Scholar 

  13. Aggarwal, C., Zhai, C.: Mining Text Data. The Springer Publishing Co., New York (2012)

    Book  Google Scholar 

  14. Karimi, K., Hamilton, H.: Finding temporal relations: Causal Bayesian networks vs. C4.5, Foundations of Intelligent Systems, pp. 266–273 (2010)

  15. Qin, B., Xia, Y., Prabhakar, S.: Rule induction for uncertain data. Knowl. Inf. Syst. 29(1), 103–130 (2011)

    Article  Google Scholar 

  16. Lejarraga, T., Dutt, V., Gonzalez, C.: Instance-based learning: a general model of repeated binary choice. J. Behav. Decis. Mak. 25(2), 143–153 (2012)

    Article  Google Scholar 

  17. Jiang, S., Pang, G., Wu, M., Kuang, L.: An improved K-nearest-neighbor algorithm for text categorization. Expert Syst. Appl. 39(1), 1503–1509 (2012)

    Article  Google Scholar 

  18. Qu, Y., Shang, C., Shen, Q., Mac Parthaláin, N.,  Wu,W.: Kernel-based fuzzy-rough nearest neighbour classification. In: Proceedings of the 20th International Conference on Fuzzy Systems, pp. 1523–1529 (2011)

  19. Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 17(4), 824–838 (2009)

    Article  Google Scholar 

  20. Maji, S., Berg, A., Malik, J.: Efficient classification for additive kernel SVMs. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 66–77 (2013)

    Article  Google Scholar 

  21. Wolfe, J.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37, 2486–2492 (1976)

    Article  Google Scholar 

  22. Boyd, N., Byng, J., Jong, R., Fishell, E., Little, L., Miller, A., Lockwood, G., Tritchler, D., Yaffe, M.: Quantitative classification of mammographic densities and breast cancer risk: results from the canadian national breast screening study. J. Natl Cancer Inst. 87(9), 670–675 (1995)

    Article  Google Scholar 

  23. Tabár, L., Tot, T., Dean, P.: The Art and Science of Early Detection with Mammography. Georg Thieme Verlag, Stuttgart (2005)

    Google Scholar 

  24. American College of Radiology: Illustrated Breast Imaging Reporting and Data System BIRADS, 3rd ed. (1998)

  25. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)

    Book  MATH  Google Scholar 

  26. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski, R. (ed.) Intelligent Decision Support, pp. 203–232. Kluwer, Dordrecht (1992)

    Chapter  Google Scholar 

  27. Radzikowska, A., Kerre, E.: A comparative study of fuzzy rough sets. Fuzzy Sets Syst. 126(2), 137–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cornelis, C., De Cock, M., Radzikowska, A.: Vaguely quantified rough sets, Lecture Notes in Artificial Intelligence, vol. 4482, pp. 87–94 (2007)

  29. Keller, J., Gray, M., Givens, J.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 15(2), 580–588 (1985)

    Article  Google Scholar 

  30. Sarkar, M.: Fuzzy-rough nearest neighbors algorithm. Fuzzy Sets Syst. 158, 2123–2152 (2007)

    Article  Google Scholar 

  31. Sun, L., Li, C.: A fast and scalable fuzzy-rough nearest neighbor algorithm. WRI Glob. Congr. Intell. Syst. 4, 311–314 (2009)

    Google Scholar 

  32. Bian, H., Mazlack, L.: Fuzzy-rough nearest-neighbor classification approach. In: Proceeding of the 22nd International Conference of the North American Fuzzy Information Processing Society, pp. 500–505 (2003)

  33. Babu, V., Viswanath, P.: Rough-fuzzy weighted k-nearest leader classifier for large data sets. Pattern Recogn. 42(9), 1719–1731 (2009)

    Article  MATH  Google Scholar 

  34. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification and prediction. Theoret. Comput. Sci. 412(42), 5871–5884 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Genton, M.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2001)

    MathSciNet  Google Scholar 

  36. Moser, B.: On the T-transitivity of kernels. Fuzzy Sets Syst. 157, 1787–1796 (2006)

    Article  MATH  Google Scholar 

  37. Hu, Q., Chen, D., Yu, D., Pedrycz, W.: Kernelised fuzzy rough sets. In: 4th International Conference, Rough Sets and Knowledge Technology, pp. 304–311 (2009)

  38. Jensen, R., Cornelis, C.: Fuzzy-rough instance selection. In: Proceedings of the 19th International Conference on Fuzzy Systems, pp. 1776–1782 (2010)

  39. Qu, Y., Shen, Q., Mac Parthaláin, N., Shang, C., Wu, W.: Fuzzy similarity-based nearest-neighbour classification as alternatives to their fuzzy-rough parallels. Int. J. Approx. Reason. 54(1), 184–195 (2013)

    Article  MATH  Google Scholar 

  40. Suckling, J., Partner, J., Dance, D., Astley, S.,Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S., Betal, D., Taylor, P., Savage, J.: The mammographic image analysis society digital mammogram database. In: International Workshop on Digital Mammography, pp. 211–221 (1994)

  41. Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E., Zwiggelaar, R.: A novel breast tissue density classification methodology. IEEE Trans. Inf. Technol. Biomed. 12(1), 55–65 (2008)

    Article  Google Scholar 

  42. Lam, P., Vacek, P., Geller, B., Muss, H.: The association of increased weight, body mass index, and tissue density with the risk of breast carcinoma in vermont. Cancer 89, 369–375 (2000)

    Article  Google Scholar 

  43. Hall, M.: Correlation-based feature selection for discrete and numeric class machine learning. PhD thesis, University of Waikato (2000)

  44. Kleene, S.: Introduction to Metamathematics. Van Nostrand, New York (1952)

    MATH  Google Scholar 

  45. Dienes, S.: On an implication function in many-valued systems of logic. J. Symb. Log. 14(2), 95–97 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Rajnarayan and D. Wolpert, “Bias-variance trade-offs: novel applications,” Encyclopedia of Machine Learning, pp. 101–110, 2010

  47. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Article  Google Scholar 

  48. Mac Parthaláin, N., Jensen, R.: Unsupervised fuzzy-rough set-based dimensionality reduction. Inf. Sci. 229, 106–121 (2013)

    Article  MATH  Google Scholar 

  49. Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches. IEEE Press and Wiley, Hoboken (2008)

    Book  Google Scholar 

  50. Shang, C., Barnes, D.: Fuzzy-rough feature selection aided support vector machines for Mars image classification. Comput. Vis. Image Underst. 117(3), 202–213 (2013)

    Article  Google Scholar 

  51. Fu, X., Shen, Q.: Fuzzy complex numbers and their application for classifiers performance evaluation. Pattern Recogn. 44(7), 1403–1417 (2011)

    Article  MATH  Google Scholar 

  52. Boongoen, T., Shang, C., Iam-On, N., Shen, Q.: Extending data reliability measure to a filter approach for soft subspace clustering. IEEE Trans. Syst. Man Cybern. Part B 40, 6 (2011)

    Google Scholar 

  53. Boongoen, T., Shen, Q.: Nearest-neighbor guided evaluation of data reliability and its applications. IEEE Trans. Syst. Man Cybern. B 40(6), 1622–1633 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (Grant No. 61272171), the Fundamental Research Funds for the Central Universities (Grant No. 3132014094, 3132013335, 3132013325) and the China Postdoctoral Science Foundation (Grant No. 2013M541213). The authors would like to thank the support provided by Aberystwyth University and by the colleagues in the Advanced Reasoning Group with the Department of Computer Science, Institute of Mathematics, Physics and Computer Science at Aberystwyth University, UK. The authors are also grateful to the reviewers for their constructive comments which have helped improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Shang, C., Shen, Q. et al. Kernel-based Fuzzy-rough Nearest-neighbour Classification for Mammographic Risk Analysis. Int. J. Fuzzy Syst. 17, 471–483 (2015). https://doi.org/10.1007/s40815-015-0044-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-015-0044-1

Keywords

Navigation