Skip to main content
Log in

Assessing the complex interplay of airborne pollutants and lung cancer prevalence via the improved decision tree-based vine copula modeling

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Lung cancer stands as a prevalent respiratory ailment worldwide, with its incidence intricately linked to air pollution. Investigating this relationship is pivotal for implementing effective preventive strategies. Traditionally, research has relied on a simplistic causal model, assuming uniform relationships between air pollutants and lung cancer occurrence. However, this assumption falls short of reality. This study aims to enhance the predictive accuracy of d-vine copula modeling which elucidate the complex relationship between various air pollutants—such as PM\(_{2.5}\), PM\(_{1.0}\), CO, SO\(_2\), and SO\(_4\)—and the occurrence of lung cancer in both genders comprehensively, by employing a decision tree-based algorithm, specifically using bagging machine learning algorithm. This method allows for the simultaneous exploration of relationships among the important variables with diverse natures and structures. The results reveal distinctive characteristics and structures in the association between air pollutants and lung cancer incidence in men and women, highlighting variations in tail dependencies. Specifically, PM\(_{1.0}\) and SO\(_4\) emerge as pivotal factors for men, whereas PM\(_{2.5}\) exerts the greatest influence on women. In our comparison, we found that employing a bagging algorithm into the d-vine copula modeling, resulted in superior accuracy compared to d-vine copula modeling without bagging. The mean absolute percentage error (MAPE) of the d-vine copula model was significantly reduced from 4.954% for men and 7.412% for women to 3.861% for men and 6.613% for women. This comprehensive approach sheds light on the complex interplay between air pollutants and lung cancer, offering valuable insights for targeted intervention and mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econom 44(2):182–198

    Article  Google Scholar 

  • Ahdika A, Rosadi D, Effendie AR, Gunardi (2021) Measuring dynamic dependency using time-varying copulas with extended parameters: evidence from exchange rates data. MethodsX 8(101322):1–16

    Google Scholar 

  • Alhanti B (2016) Methods for estimating the effect of air pollution on asthma under a changing climate. Ph. D. thesis, Emory University

  • American Cancer Society (2021) Radiation therapy side effects

  • Archana KV, Komarasamy G (2023) A novel deep learning-based brain tumor detection using the bagging ensemble with K-nearest neighbor. J Intell Syst 32(1):1–13. https://doi.org/10.1515/jisys-2022-0206

    Article  Google Scholar 

  • Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA (2014) Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther 05(08):817–822. https://doi.org/10.4236/jct.2014.58089

    Article  Google Scholar 

  • Balasubramanian A, John T, Adams DJ (2023) Breathing in danger: how particulate matter pollution is putting the public at risk of lung cancer. J Pathol 261(1):1–4. https://doi.org/10.1002/path.6160

    Article  Google Scholar 

  • Bedford T, Cooke RM (2001) Probability density decomposition for conditionally dependent random variables modeled by vines. Ann Math Artif Intell 32(1–4):245–268. https://doi.org/10.1023/A:1016725902970

    Article  Google Scholar 

  • Berg CD, Schiller JH, Boffetta P, Cai J, Connolly C, Kerpel-Fronius A, Kitts AB, Lam DC, Mohan A, Myers R, Suri T, Tammemagi MC, Yang D, Lam S (2023) Air pollution and lung cancer: a review by International Association for the Study of Lung Cancer Early Detection and Screening Committee. J Thorac Oncol 18(10):1277–1289. https://doi.org/10.1016/j.jtho.2023.05.024

    Article  CAS  Google Scholar 

  • Böhm GM (2023) Air pollution and lung cancer. J Respirol 9(2):150–158. https://doi.org/10.20473/jr.v9-i.2.2023.150-158

    Article  Google Scholar 

  • Bovio N, Wild P, Guseva Canu I (2021) Lung cancer mortality in the Swiss working population. J Occup Environ Med 63(12):1029–1036. https://doi.org/10.1097/JOM.0000000000002302

    Article  CAS  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24:123–140. https://doi.org/10.1007/BF00058655

    Article  Google Scholar 

  • CDC (2022) What is lung cancer?

  • Chan HK, Ismail S (2014) Side effects of chemotherapy among cancer patients in a Malaysian General Hospital: experiences, perceptions and informational needs from clinical pharmacists. Asian Pac J Cancer Prev 15(13):5305–5309. https://doi.org/10.7314/APJCP.2014.15.13.5305

    Article  Google Scholar 

  • Chung CY, Yang J, He J, Yang X, Hubbard R, Ji D (2021) An investigation into the impact of variations of ambient air pollution and meteorological factors on lung cancer mortality in Yangtze River Delta. Sci Total Environ 779:146427. https://doi.org/10.1016/j.scitotenv.2021.146427

    Article  CAS  Google Scholar 

  • Dilalla V, Chaput G, Williams T, Sultanem K (2020) Radiotherapy side effects: integrating a survivorship clinical lens to better serve patients. Curr Oncol 27(2):107–112. https://doi.org/10.3747/co.27.6233

    Article  CAS  Google Scholar 

  • Embrechts P, McNeil A, Straumann D (1999) Correlation pitfalls and alternatives. Risk Mag 69–71

  • Environmental Health Criteria 13 (1972) Carbon monoxide executive summary issued by the World Health Organization in conjunction with the United Nations Environment Programme

  • Fiordelisi A, Piscitelli P, Trimarco B, Coscioni E, Iaccarino G, Sorriento D (2017) The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev 22(3):337–347. https://doi.org/10.1007/s10741-017-9606-7

    Article  CAS  Google Scholar 

  • Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, MacIntyre MF, Marczak L, Marquez N, Mokdad AH, Pinho C, Pourmalek F, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, Shackelford KA, Shibuya K, Stanaway J, Steiner C, Sun J, Takahashi K, Vollset SE, Vos T, Wagner JA, Wang H, Westerman R, Zeeb H, Zoeckler L, Abd-Allah F, Ahmed MB, Alabed S, Alam NK, Aldhahri SF, Alem G, Alemayohu MA, Ali R, Al-Raddadi R, Amare A, Amoako Y, Artaman A, Asayesh H, Atnafu N, Awasthi A, Saleem HB, Barac A, Bedi N, Bensenor I, Berhane A, Bernabé E, Betsu B, Binagwaho A, Boneya D, Campos-Nonato I, Castañeda-Orjuela C, Catalá-López F, Chiang P, Chibueze C, Chitheer A, Choi JY, Cowie B, Damtew S, Das Neves J, Dey S, Dharmaratne S, Dhillon P, Ding E, Driscoll T, Ekwueme D, Endries AY, Farvid M, Farzadfar F, Fernandes J, Fischer F, Ghiwot TT, Gebru A, Gopalani S, Hailu A, Horino M, Horita N, Husseini A, Huybrechts I, Inoue M, Islami F, Jakovljevic M, James S, Javanbakht M, Jee SH, Kasaeian A, Kedir MS, Khader YS, Khang YH, Kim D, Leigh J, Linn S, Lunevicius R, El Razek HMA, Malekzadeh R, Malta DC, Marcenes W, Markos D, Melaku YA, Meles KG, Mendoza W, Mengiste DT, Meretoja TJ, Miller TR, Mohammad KA, Mohammadi A, Mohammed S, Moradi-Lakeh M, Nagel G, Nand D, Le Nguyen Q, Nolte S, Ogbo FA, Oladimeji KE, Oren E, Pa M, Park EK, Pereira DM, Plass D, Qorbani M, Radfar A, Rafay A, Rahman M, Rana SM, Søreide K, Satpathy M, Sawhney M, Sepanlou SG, Shaikh MA, She J, Shiue I, Shore HR, Shrime MG, So S, Soneji S, Stathopoulou V, Stroumpoulis K, Sufiyan MB, Sykes BL, Tabarés-Seisdedos R, Tadese F, Tedla BA, Tessema GA, Thakur JS, Tran BX, Ukwaja KN, Chudi Uzochukwu BS, Vlassov VV, Weiderpass E, Wubshet Terefe M, Yebyo HG, Yimam HH, Yonemoto N, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zenebe ZM, Murray CJ, Naghavi M (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the Global Burden of Disease Study Global Burden. JAMA Oncol 3(4):524–548. https://doi.org/10.1001/jamaoncol.2016.5688

    Article  Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37:80–100

    Article  Google Scholar 

  • Gawełko J, Cierpiał-Wolan M, Bwanakare S, Czarnota M (2022) Association between air pollution and squamous cell lung cancer in South-Eastern Poland. Int J Environ Res Public Health 19(18):1–14. https://doi.org/10.3390/ijerph191811598

    Article  CAS  Google Scholar 

  • Han SC, Wang GZ, Zhou GB (2023) Air pollution, EGFR mutation, and cancer initiation. Cell Rep Med 4(5):101046. https://doi.org/10.1016/j.xcrm.2023.101046

    Article  CAS  Google Scholar 

  • Hanselmann RG, Welter C (2022) Origin of cancer: cell work is the key to understanding cancer initiation and progression. Front Cell Dev Biol 10(March):1–14. https://doi.org/10.3389/fcell.2022.787995

    Article  Google Scholar 

  • Hassanpour SH, Dehghani M (2017) Review of cancer from perspective of molecular. J Cancer Res Pract 4(4):127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001

    Article  Google Scholar 

  • Hazi Y, Heikkinen MS, Cohen BS (2003) Size distribution of acidic sulfate ions in fine ambient particulate matter and assessment of source region effect. Atmos Environ 37(38):5403–5413. https://doi.org/10.1016/j.atmosenv.2003.08.034

    Article  CAS  Google Scholar 

  • Hien PD, Bac VT, Thinh NTH, Anh HL, Thang DD, Nghia NT (2021) A comparison study of chemical compositions and sources of pm1.0 and pm2.5 in Hanoi. Aerosol Air Quality Res 21(10):1–16. https://doi.org/10.4209/AAQR.210056

    Article  Google Scholar 

  • Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, Kuan FC, Marongiu F, Evans EJ Jr, Moore DA, Rodrigues FS, Pich O, Bakker B, Swanton C (2023) Lung adenocarcinoma promotion by air pollutants. Nature 616:159–167

    Article  CAS  Google Scholar 

  • IARC (2012) Cancer over time

  • Ibidoja OJ, Shan FP, Mukhtar JS, Ali MK (2023) Robust M-estimators and machine learning algorithms for improving the predictive accuracy of seaweed contaminated big data. J Niger Soc Phys Sci 5(1):1–8. https://doi.org/10.46481/jnsps.2023.1137

    Article  Google Scholar 

  • International Seismological Center (2023) ISC bulletin: event catalogue search

  • Jackson SS, Marks MA, Katki HA, Cook MB, Hyun N, Freedman ND, Kahle LL, Castle PE, Graubard BI, Chaturvedi AK (2022) Sex disparities in the incidence of 21 cancer types: quantification of the contribution of risk factors. Cancer 128(19):3531–3540. https://doi.org/10.1002/cncr.34390

    Article  Google Scholar 

  • Jin J, Wu X, Yin J, Li M, Shen J, Li J, Zhao Y, Zhao Q, Wu J, Wen Q, Cho CH, Yi T, Xiao Z, Qu L (2019) Identification of genetic mutations in cancer: challenge and opportunity in the new era of targeted therapy. Front Oncol 9(MAR):1–7. https://doi.org/10.3389/fonc.2019.00263

    Article  Google Scholar 

  • Johnston HJ, Mueller W, Steinle S, Vardoulakis S, Tantrakarnapa K, Loh M, Cherrie JW (2019) How harmful is particulate matter emitted from biomass burning? A Thailand perspective. Curr Pollut Rep 5(4):353–377. https://doi.org/10.1007/s40726-019-00125-4

    Article  Google Scholar 

  • Jondeau E, Rockinger M (2006) The Copula-GARCH model of conditional dependencies: an international stock market application. J Int Money Financ 25(5):827–853

    Article  Google Scholar 

  • Katanoda K, Sobue T, Satoh H, Tajima K, Suzuki T, Nakatsuka H, Takezaki T, Nakayama T, Nitta H, Tanabe K, Tominaga S (2011) An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. J Epidemiol 21(2):132–143. https://doi.org/10.2188/jea.JE20100098

    Article  Google Scholar 

  • Kim HI, Lim H, Moon A (2018) Sex differences in cancer: epidemiology, genetics and therapy. Biomol Ther 26(4):335–342. https://doi.org/10.4062/biomolther.2018.103

    Article  CAS  Google Scholar 

  • Kostova SP, Rumchev KV, Vlaev T, Popova SB (2012) Using copulas to measure association between air pollution and respiratory diseases. Proc World Acad Sci Eng Technol 6(January 2012):749–754

    Google Scholar 

  • Lee HC, Lu YH, Huang YL, Huang SL, Chuang HC (2022) Air pollution effects to the subtype and severity of lung cancers. Front Med 9(March):1–7. https://doi.org/10.3389/fmed.2022.835026

    Article  Google Scholar 

  • Lipfert FW, Wyzga RE (2019) Longitudinal relationships between lung cancer mortality rates, smoking, and ambient air quality: a comprehensive review and analysis. Crit Rev Toxicol 49(9):790–818. https://doi.org/10.1080/10408444.2019.1700210

    Article  CAS  Google Scholar 

  • Liu L, Liu X, Ma X, Ning B, Wan X (2020) Analysis of the associations of indoor air pollution and tobacco use with morbidity of lung cancer in Xuanwei, China. Sci Total Environ 717(xxxx):135232. https://doi.org/10.1016/j.scitotenv.2019.135232

    Article  CAS  Google Scholar 

  • Liu CL, Lee MH, Hsueh SN, Chung CC, Lin CJ, Chang PH, Luo AC, Weng HC, Lee YH, Dai MJ, Tsai MJ (2024) A bagging approach for improved predictive accuracy of intradialytic hypotension during hemodialysis treatment. Comput Biol Med 172(September 2023):108244. https://doi.org/10.1016/j.compbiomed.2024.108244

    Article  Google Scholar 

  • Loomans-Kropp HA, Umar A (2019) Cancer prevention and screening: the next step in the era of precision medicine. NPJ Precis Oncol 3(1):1–8. https://doi.org/10.1038/s41698-018-0075-9

    Article  Google Scholar 

  • Lopes-Ramos CM, Quackenbush J, DeMeo DL (2020) Genome-wide sex and gender differences in cancer. Front Oncol 10(November):1–17. https://doi.org/10.3389/fonc.2020.597788

    Article  Google Scholar 

  • Malek NHA, Yaacob WFW, Wah YB, Md Nasir SA, Shaadan N, Indratno SW (2023) Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data. Indones J Electr Eng Comput Sci 29(1):598–608. https://doi.org/10.11591/ijeecs.v29.i1.pp598-608

    Article  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8(February):1–13. https://doi.org/10.3389/fpubh.2020.00014

    Article  Google Scholar 

  • McDuffie EE, Martin RV, Spadaro JV, Burnett R, Smith SJ, O’Rourke P, Hammer MS, van Donkelaar A, Bindle L, Shah V, Jaeglé L, Luo G, Yu F, Adeniran JA, Lin J, Brauer M (2021) Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat Commun 12(1):1–12. https://doi.org/10.1038/s41467-021-23853-y

    Article  CAS  Google Scholar 

  • Mohan G, Hamna A, Jijo JA, Devi S, Narayanasamy A, Vellingiri B (2019) Recent advances in radiotherapy and its associated side effects in cancer—a review. J Basic Appl Zool 14(80):1–10

    Google Scholar 

  • NASA (2023) Earth data

  • Nasir Amin M, Iftikhar B, Khan K, Faisal Javed M, Mohammad AbuArab A, Faisal Rehman M (2023) Prediction model for rice husk ash concrete using AI approach: boosting and bagging algorithms. Structures 50(2022):745–757. https://doi.org/10.1016/j.istruc.2023.02.080

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer Science+Business Media Inc., New York

    Google Scholar 

  • Olsson A, Kromhout H (2021) Occupational cancer burden: the contribution of exposure to process-generated substances at the workplace. Molecular Oncology 15(3):753–763

  • Pallis AG, Syrigos KN (2013) Lung cancer in never smokers: disease characteristics and risk factors. Crit Rev Oncol Hematol 88(3):494–503. https://doi.org/10.1016/j.critrevonc.2013.06.011

    Article  Google Scholar 

  • Parsa N (2012) Environmental factors inducing human cancers. Iran J Public Health 41(11):1–9

    CAS  Google Scholar 

  • Patton AJ (2006) Modelling asymmetric exchange rate dependence. Int Econ Rev 47(2):527–556

    Article  Google Scholar 

  • Rahman MM, Thill JC, Paul KC (2020) COVID-19 pandemic severity, lockdown regimes, and people’s mobility: early evidence from 88 countries. Sustainability (Switzerland) 12(21):1–17

    Google Scholar 

  • Sibuya M (1960) Bivariate extreme statistics, I. Ann Inst Stat Math 11(3):195–210

    Article  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  • Sklar A (1959) Distribution functions of n dimensions and margins. Publ Inst Stat Univ Paris 8:229–231

    Google Scholar 

  • Soedomo M (2001) Pencemaran udara. Penerbit ITB, Bandung

    Google Scholar 

  • Stephens EK, Marshall HM, Chin V, Fong KM (2023) Air pollution and lung cancer—a new era. Respirology 28(4):313–315. https://doi.org/10.1111/resp.14464

    Article  Google Scholar 

  • Tsongalis GJ (2021) A brief note on side effects of cancer radiation therapy. J Cancer Epidemiol Prev 6(6):8505

    Google Scholar 

  • Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A (2020) Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632

    Article  Google Scholar 

  • United States Environmental Agency (2017) Particulate matter (PM) basics

  • Wang N, Mengersen K, Tong S, Kimlin M, Zhou M, Wang L, Yin P, Xu Z, Cheng J, Zhang Y, Hu W (2019) Short-term association between ambient air pollution and lung cancer mortality. Environ Res 179(June):108748. https://doi.org/10.1016/j.envres.2019.108748

    Article  CAS  Google Scholar 

  • WCRF (2022) Worldwide cancer data

  • WHO (2010) Cancer treatment

  • WHO (2022) Preventing cancer

  • Yun Y, Gao R, Yue H, Guo L, Li G, Sang N (2017) Sulfate aerosols promote lung cancer metastasis by epigenetically regulating the epithelial-to-mesenchymal transition (EMT). Environ Sci Technol 51(19):11401–11411

    Article  CAS  Google Scholar 

  • Zhang Z, Zhu D, Cui B, Ding R, Shi X, He P (2020) Association between particulate matter air pollution and lung cancer. Thorax 75(1):85–87. https://doi.org/10.1136/thoraxjnl-2019-213722

    Article  Google Scholar 

  • Zhu F, Ding R, Lei R, Cheng H, Liu J, Shen C, Zhang C, Xu Y, Xiao C, Li X, Zhang J, Cao J (2019) The short-term effects of air pollution on respiratory diseases and lung cancer mortality in Hefei: a time-series analysis. Respir Med 146(2018):57–65. https://doi.org/10.1016/j.rmed.2018.11.019

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Faculty of Mathematics and Natural Sciences at Universitas Islam Indonesia (UII) for the financial support.

Funding

Research grant from Faculty of Mathematics and Natural Sciences at Universitas Islam Indonesia (UII) No. 411.a/Dek-FMIPA/10/Div.Adm.Um &RT/V/2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atina Ahdika.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahdika, A., Werdyani, S. & Muhaimin, M. Assessing the complex interplay of airborne pollutants and lung cancer prevalence via the improved decision tree-based vine copula modeling. Model. Earth Syst. Environ. (2024). https://doi.org/10.1007/s40808-024-02033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40808-024-02033-z

Keywords

Navigation