Skip to main content
Log in

Evaluating spatial resolution and imperfect detection effects on the predictive performance of inhomogeneous spatial point process models trained with simulated presence-only data

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Species distribution models (SDMs) are crucial in ecology, conservation, and ecosystem management. Numerous SDMs have been developed over time, and studies have shown that these tools can be affected by a range of factors, such as data type, spatial resolution, number of explanatory variables, sample characteristics, and collinearity between environmental variables. New SDMs have often been developed to address some of these issues. Understanding the performance of new statistical tools is crucial for researchers in various fields. Thus, we assessed the predictive ability of the Poisson point process and log Gaussian Cox process models, considered as new SDMs, by simulating two factors, spatial resolution and imperfect detection, which are likely to have significant effects on SDMs, and considering Gabon as the study area. The observed model performance metrics, such as the Area Under the Receiver Operating Characteristic Curve (AUC), Mean Absolute Error (MAE), and Pearson correlation (CORR) between the true and predicted intensities, were used to evaluate the predictive performance of these models. The results showed that, although most of these models failed to estimate the intercept \({\alpha }_{0}\) and covariate coefficients (\({\varvec{\beta }}_{x}{\textbf {x}}(z)\)) correctly, they at least had the merit of demonstrated good performance (AUC more than 70%, CORR more than 67%, and MAE less than 0.61%). However, the spatial resolution of the environmental variables and imperfect detection of simulated species occurrences significantly affected the predictive performance of the two models (P < .0001). This study offers important insights for ecologist modellers, environmentalists, and conservators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available on request from the corresponding author.

References

  • Abrego N, Ovaskainen O (2023) Evaluating the predictive performance of presence-absence models: why can the same model appear excellent or poor? Ecol Evolut 13(12):e10784. https://doi.org/10.1002/ece3.10784

    Article  Google Scholar 

  • Anderson RP, Peterson AT, Gómez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in south American pocket mice. Oikos 98(1):3–16

    Article  Google Scholar 

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200(1):1–19. https://doi.org/10.1016/j.ecolmodel.2006.07.005

    Article  Google Scholar 

  • Baddeley A, Rubak E, Turner R (2016) Spatial Point Patterns: Methodology and Applications with R. Chapman & Hall/CRC

  • Bahn V, McGill BJ (2013) Testing the predictive performance of distribution models. Oikos 122(3):321–331. https://doi.org/10.1111/j.1600-0706.2012.00299.x

    Article  Google Scholar 

  • Baker DJ, Maclean IMD, Goodall M et al (2021) Species distribution modelling is needed to support ecological impact assessments. J Appl Ecol 58(1):21–26. https://doi.org/10.1111/1365-2664.13782

    Article  Google Scholar 

  • Banerjee (2004) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC Press

  • Besag J (1975) Statistical analysis of non-lattice data. J R Stat Soc Ser D (Statist) 24(3):179–195

    Google Scholar 

  • Buri A, Cianfrani C, Pinto-Figueroa E et al (2017) Soil factors improve predictions of plant species distribution in a mountain environment. Prog Phys Geogr Earth Environ 41(6):703–722. https://doi.org/10.1177/0309133317738162

    Article  Google Scholar 

  • Chauvier Y, Descombes P, Guéguen M et al (2022) Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography 10:e05973

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, Hoboken

    Book  Google Scholar 

  • De Marco P, Nóbrega CC (2018) Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLOS One 13(9):e0202403. https://doi.org/10.1371/journal.pone.0202403

    Article  CAS  Google Scholar 

  • Dorazio RM (2014) Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Global Ecol Biogeogr 23(12):1472–1484

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evolut System 40(1):677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Elith JH, Graham CP, Anderson R et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evolut 1(4):330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Fao (2012) Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria

  • Fei S, Yu F (2016) Quality of presence data determines species distribution model performance: a novel index to evaluate data quality. Landsc Ecol 31(1):31–42. https://doi.org/10.1007/s10980-015-0272-7

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Article  Google Scholar 

  • Fithian W, Hastie T (2013) Finite-sample equivalence in statistical models for presence-only data. Ann Appl Stat 7(4):1917. https://doi.org/10.1214/13-aoas667

    Article  Google Scholar 

  • Fithian W, Elith J, Hastie T et al (2015) Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evolut 6(4):424–438. https://doi.org/10.1111/2041-210x.12242

    Article  Google Scholar 

  • Fletcher RJ, McCleery RA, Greene DU et al (2016) Integrated models that unite local and regional data reveal larger-scale environmental relationships and improve predictions of species distributions. Landsc Ecol 31(6):1369–1382

    Article  Google Scholar 

  • Fox J, Weisberg S, Adler D, et al (2012) Package ‘car’. R Foundation for Statistical Computing 16, Vienna

  • Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press

  • Graham CH, Elith J, Hijmans RJ et al (2008) The influence of spatial errors in species occurrence data used in distribution models. J Appl Ecol 45(1):239–247

    Article  Google Scholar 

  • Guélat J, Kéry M (2018) Effects of spatial autocorrelation and imperfect detection on species distribution models. Methods Ecol Evolut 9(6):1614–1625

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

    Article  Google Scholar 

  • Gábor L, Moudrý V, Barták V et al (2020) How do species and data characteristics affect species distribution models and when to use environmental filtering? Int J Geograph Inform Sci 34(8):1567–1584. https://doi.org/10.1080/13658816.2019.1615070

    Article  Google Scholar 

  • Hallgren W, Santana F, Low-Choy S et al (2019) Species distribution models can be highly sensitive to algorithm configuration. Ecol Model 408(108):719. https://doi.org/10.1016/j.ecolmodel.2019.108719

    Article  Google Scholar 

  • Hijmans RJ, Cruz M, Rojas E et al (2001) DIVA-GIS, version 1.4. a geographic information system for the management and analysis of genetic resources data. Plant Gen Resour Newslett 127:15–19

    Google Scholar 

  • Holdridge LR, Grenke WC (1971) Forest environments in tropical life zones: a pilot study. Forest environments in tropical life zones: a pilot study

  • Hothorn T, Bretz F, Westfall P et al (2016) Package ‘multcomp’. Simultaneous inference in general parametric models Project for Statistical Computing, Vienna, Austria

  • Humphreys JM, Elsner JB, Jagger TH et al (2017) A bayesian geostatistical approach to modeling global distributions of lygodium microphyllum under projected climate warming. Ecol Model 363:192–206

    Article  Google Scholar 

  • Huston MA (2005) Introductory essay: critical issues for improving predictions. In: Predicting species occurrences: issues of accuracy and scale

  • Irving K, Jähnig SC, Kuemmerlen M (2020) Identifying and applying an optimum set of environmental variables in species distribution models. Inland Waters 10(1):11–28. https://doi.org/10.1080/20442041.2019.1653111

    Article  Google Scholar 

  • Isaac NJ, Jarzyna MA, Keil P, et al (2019) Data integration for large-scale models of species distributions. Trends Ecol Evolut

  • Isaac NJB, Pocock MJO (2015) Bias and information in biological records: bias and information in biological records. Biol J Linnean Soc 115(3):522–531. https://doi.org/10.1111/bij.12532

    Article  Google Scholar 

  • Johnson DS, Hooten MB, Kuhn CE (2013) Estimating animal resource selection from telemetry data using point process models. J Anim Ecol 82(6):1155–1164

    Article  Google Scholar 

  • Khan AM, Li Q, Saqib Z, et al (2022) MaxEnt modelling and impact of climate change on habitat suitability variations of economically important chilgoza pine (Pinus gerardiana wall.) in south Asia. Forests 13(5):715. https://www.mdpi.com/1999-4907/13/5/715

  • Koshkina V, Wang Y, Gordon A et al (2017) Integrated species distribution models: combining presence-background data and site-occupancy data with imperfect detection. Methods Ecol Evolut 8(4):420–430

    Article  Google Scholar 

  • Lavancier F, Poinas A, Waagepetersen R (2021) Adaptive estimating function inference for nonstationary determinantal point processes. Scand J Stat 48(1):87–107

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the robert h MacArthur award lecture. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Liu C, Wolter C, Xian W et al (2020) Species distribution models have limited spatial transferability for invasive species. Ecol Lett 23(11):1682–1692. https://doi.org/10.1111/ele.13577

    Article  Google Scholar 

  • Loiselle BA, Jørgensen PM, Consiglio T et al (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35(1):105–116

    Article  Google Scholar 

  • Mandrekar JN (2010) Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 5(9):1315–1316

    Article  Google Scholar 

  • Meineri E, Hylander K (2017) Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography 40(8):1003–1013. https://doi.org/10.1111/ecog.02494

    Article  Google Scholar 

  • Mengersen K, Peterson EE, Clifford S et al (2017) Modelling imperfect presence data obtained by citizen science. Environmetrics 28(5):e2446

    Article  Google Scholar 

  • Merow C, Wilson AM, Jetz W (2017) Integrating occurrence data and expert maps for improved species range predictions. Global Ecol Biogeogr 26(2):243–258

    Article  Google Scholar 

  • Miller J (2010) Species distribution modeling: species distribution modeling. Geogr Compass 4(6):490–509. https://doi.org/10.1111/j.1749-8198.2010.00351.x

    Article  Google Scholar 

  • Moraga P, Cano J, Baggaley RF et al (2015) Modelling the distribution and transmission intensity of lymphatic filariasis in sub-saharan africa prior to scaling up interventions: integrated use of geostatistical and mathematical modelling. Parasit Vect 8(1):560

    Article  Google Scholar 

  • Moura Júnior EGd, Nascimento FAOd, Lemos Filho JPd et al (2021) Limnological layers improve species distribution modeling of aquatic macrophytes at fine-spatial resolution. Acta Bot Brasil 35:9–16

    Article  Google Scholar 

  • Naimi B, Araújo MB (2016) sdm: a reproducible and extensible r platform for species distribution modelling. Ecography 39(4):368–375

    Article  Google Scholar 

  • Norberg A, Abrego N, Blanchet FG, et al. (2019) A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monogr 89(3). https://doi.org/10.1002/ecm.1370

  • Osborne J (2010) Improving your data transformations: applying the box-cox transformation. Pract Assess Res Evaluat 15(1):12

    Google Scholar 

  • Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43(3):405–412. https://doi.org/10.1111/j.1365-2664.2005.01112.x

    Article  Google Scholar 

  • Peel SL, Hill NA, Foster SD et al (2019) Reliable species distributions are obtainable with sparse, patchy and biased data by leveraging over species and data types. Methods Ecol Evolut 10(7):1002–1014. https://doi.org/10.1111/2041-210x.13196

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M et al (2017) Opening the black box: an open-source release of maxent. Ecography 40(7):887–893. https://doi.org/10.1111/ecog.03049

    Article  Google Scholar 

  • Rajala T (2014) A note on bayesian logistic regression for spatial exponential family gibbs point processes. arXiv preprint arXiv:1411.0539

  • Rajala T, Penttinen A (2014) Bayesian analysis of a gibbs hard-core point pattern model with varying repulsion range. Comput Stati Data Anal 71:530–541

    Article  Google Scholar 

  • Randin CF, Engler R, Normand S et al (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biol 15(6):1557–1569

    Article  Google Scholar 

  • Renner IW, Elith J, Baddeley A et al (2015) Point process models for presence-only analysis. Methods Ecol Evolut 6(4):366–379. https://doi.org/10.1111/2041-210x.12352

    Article  Google Scholar 

  • Reutter BA, Helfer V, Hirzel AH et al (2003) Modelling habitat-suitability using museum collections: an example with three sympatric Apodemus species from the alps. J Biogeogr 30(4):581–590. https://doi.org/10.1046/j.1365-2699.2003.00855.x

    Article  Google Scholar 

  • Rose JP, Halstead BJ, Fisher RN (2020) Integrating multiple data sources and multi-scale land-cover data to model the distribution of a declining amphibian. Biol Conserv 241(108):374. https://doi.org/10.1016/j.biocon.2019.108374

    Article  Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evolut 6(16):5973–5986. https://doi.org/10.1002/ece3.2332

    Article  Google Scholar 

  • Simmonds EG, Jarvis SG, Henrys PA et al (2020) Is more data always better? A simulation study of benefits and limitations of integrated distribution models. Ecography 43(10):1413–1422. https://doi.org/10.1111/ecog.05146

    Article  Google Scholar 

  • Srivastava V, Lafond V, Griess VC (2019) Species distribution models (sdm): applications, benefits and challenges in invasive species management. CABI Rev:1–13. https://doi.org/10.1079/PAVSNNR201914020

  • Stralberg D, Matsuoka SM, Hamann A et al (2015) Projecting boreal bird responses to climate change: the signal exceeds the noise. Ecol Appl 25(1):52–69. https://doi.org/10.1890/13-2289.1

    Article  CAS  Google Scholar 

  • Støa B, Halvorsen R, Mazzoni S et al (2018) Sampling bias in presence-only data used for species distribution modelling: theory and methods for detecting sample bias and its effects on models. Sommerfeltia 38(1):1–53

    Article  Google Scholar 

  • Tanaka U, Ogata Y, Stoyan D (2008) Parameter estimation and model selection for Neyman–Scott point processes. Biomet J 50(1):43–57. https://doi.org/10.1002/bimj.200610339

    Article  Google Scholar 

  • Team RC (2022) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Thompson CG, Kim RS, Aloe AM et al (2017) Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl Soc Psychol 39(2):81–90

    Article  Google Scholar 

  • Václavík T, Kupfer JA, Meentemeyer RK (2012) Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM): Multi-scale spatial autocorrelation and invasive species distribution models. J Biogeogr 39(1):42–55. https://doi.org/10.1111/j.1365-2699.2011.02589.x

    Article  Google Scholar 

  • Valavi R, Shafizadeh-Moghadam H, Matkan A et al (2019) Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theor Appl Climatol 137(1):1015–1025 (Publisher: Springer)

    Article  Google Scholar 

  • Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ et al (2021) Predictive performance of presence-only species distribution models: a benchmark study with reproducible code. Ecol Monogr 1(e01):486

    Google Scholar 

  • van Proosdij AS, Sosef MS, Wieringa JJ et al (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39(6):542–552

    Article  Google Scholar 

  • Walsh MG (2015) Mapping the risk of Nipah virus spillover into human populations in south and southeast Asia. Trans R Soc Trop Med Hygiene 109(9):563–571

    Article  Google Scholar 

  • Ward G, Hastie T, Barry S et al (2009) Presence-only data and the EM algorithm. Biometrics 65(2):554–563

    Article  Google Scholar 

  • Warton DI, Shepherd LC (2010) Poisson point process models solve the “pseudo-absence problem’’ for presence-only data in ecology. Ann Appl Stat 4(3):1383–1402. https://doi.org/10.1214/10-aoas331

    Article  Google Scholar 

  • Warton DI, Renner IW, Ramp D (2013) Model-based control of observer bias for the analysis of presence-only data in ecology. PLoS One 8(11):e79168. https://doi.org/10.1371/journal.pone.0079168

    Article  CAS  Google Scholar 

  • Williams JN, Seo C, Thorne J et al (2009) Using species distribution models to predict new occurrences for rare plants. Divers Distrib 15(4):565–576. https://doi.org/10.1111/j.1472-4642.2009.00567.x

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J et al (2008) Effects of sample size on the performance of species distribution models. Diver Distrib 14(5):763–773

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers and editors for their constructive feedback, insightful comments, and the time they devoted to reviewing this manuscript.

Funding

This work was carried out as part of the “Ph.D. In-Country/In-Region Scholarship Programme FSA/UAC, 2020 (Grant number 91786077 to JABB)” of the German Federal Ministry of Economic Cooperation and Development (BMZ). JABB is grateful to the German Academic Exchange Service (DAAD) for funding his Ph.D. studies.

Author information

Authors and Affiliations

Authors

Contributions

JABB: conceptualisation, methodology, data simulation, data analysis, and writing the initial draft; MLZ: data simulation; ABF: Validation, supervision, and writing revisions; RLGK: Validation, supervision, and writing revisions; DAAD: Funding acquisition.

Corresponding author

Correspondence to Judi Armel Bourobou Bourobou.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourobou, J.A.B., Zinzinhedo, M.L., Fandohan, A.B. et al. Evaluating spatial resolution and imperfect detection effects on the predictive performance of inhomogeneous spatial point process models trained with simulated presence-only data. Model. Earth Syst. Environ. (2024). https://doi.org/10.1007/s40808-024-02017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40808-024-02017-z

Keywords

Navigation