Skip to main content

Advertisement

Log in

Effect of LULC data resolution on hydrological and erosion modeling using SWAT model

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The effect of input data resolution on hydrological model performance was not considered in many studies despite its crucial importance, especially for over-parameterized hydrological models. Therefore, in the present study, three land cover sources with different resolutions (Sentinel-2, Landsat 8, and CCI-LC, with 10 m, 30 m and 300 m, respectively) were used as input data for the Soil & Water Assessment Tool (SWAT) model, to assess their impact on hydrological and erosion modeling. The SWAT model was performed over 19 years (2000–2018) in El Grou watershed (3504 km2) under a multi-site calibration approach (two stations). Statistical analysis showed good and satisfactory results for model calibration and validation. The values obtained are between 0.65 and 0.68 for R2 and NSE (Nash–Sutcliffe coefficient), and 0.57–0.63 for RSR (ratio of the root mean square error). Comparing the three models' performance (before and after calibration) indicates a significant similarity whatever the used LULC. Also, the three LULC-based simulations show a predominance of evapotranspiration with 68% and a significant sediment loss of around 1 million tons. This highlights a significant deterioration of the soils and vegetation cover, which requires a sustainable intervention to limit the effects of this phenomenon and protect soils and dams against siltation. Finally, the findings of this study highlight that low-resolution LULC data are often suitable to obtain good results while reducing processing and calibration efforts, which saves time and resources; However, the choice remains open, depending on the study purpose and the expected results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The data supporting this study’s findings are available from the corresponding author, [BY], on request.

References

  • Aawar T, Khare D (2020) Assessment of climate change impacts on streamflow through hydrological model using SWAT model: A case study of Afghanistan. Model Earth Syst Environ 6(3):1427–1437. https://doi.org/10.1007/s40808-020-00759-0

    Article  Google Scholar 

  • Abbaspour KC, van Genuchten MT, Schulin R, Schläppi E (1997) A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters. Water Resour Res 33(8):1879–1892. https://doi.org/10.1029/97WR01230

    Article  Google Scholar 

  • Abbaspour KC (2011) SWAT-CUP4 : SWAT calibration and uncertainty programs–a user manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag 106

  • Abbaspour KC, Vaghefi SA, Srinivasan R (2018) A Guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference. Water 10(1):6. https://doi.org/10.3390/w10010006

    Article  Google Scholar 

  • Abbaspour KC, Vaghefi SA, Yang H, Srinivasan R (2019) Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT applications. Scient Data 6(1):263. https://doi.org/10.1038/s41597-019-0282-4

    Article  Google Scholar 

  • Afonso de Oliveira Serrão E, Silva MT, Ferreira TR, Paiva de Ataide LC, Assis dos Santos C, Meiguins de Lima AM, de Paulo Rodrigues da Silva V, de Assis Salviano de Sousa F, Cardoso Gomes DJ (2022) Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. Int J Sedim Res 37(1): 54–69. https://doi.org/10.1016/j.ijsrc.2021.04.002

  • Al-Khafaji MS, Saeed FH (2018) Effect of DEM and land cover resolutions on simulated runoff of Adhaim Watershed by SWAT model. Eng Technol J 36(4 Part A): 439

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment Part I: Model development. JAWRA J Am Water Resour Assoc 34(1):73–89

    Article  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: Model Use, Calibration, and Validation. Transact ASABE 55(4): 1491–1508. https://doi.org/10.13031/2013.42256

  • Asante K, Leh MD, Cothren JD, Luzio MD, Brahana JV (2016) Effects of land-use land-cover data resolution and classification methods on SWAT model flow predictive reliability. Int J Hydrol Sci Technol 7(1):39–62. https://doi.org/10.1504/IJHST.2017.080956

    Article  Google Scholar 

  • Ayivi F, Jha MK (2018) Estimation of water balance and water yield in the reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT. Int Soil Water Conserv Res 6(3):203–213

    Article  Google Scholar 

  • Bhandari R, Thakali R, Kandissounon G-AA-D Kalra A, Ahmad S (2018) Effects of soil data resolution on the simulated stream flow and water quality: application of watershed-based SWAT model. World environmental and water resources congress 2018: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management, 376–386

  • Bhatta B, Shrestha S, Shrestha PK, Talchabhadel R (2019) Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. CATENA 181:104082. https://doi.org/10.1016/j.catena.2019.104082

    Article  Google Scholar 

  • Bondelid TR, McCuen RH, Jackson TJ (1982) Sensitivity of SCS models to curve number variation 1. JAWRA J Am Water Resour Assoc 18(1):111–116

    Article  Google Scholar 

  • Boufala M, El Hmaidi A, Chadli K, Essahlaoui A, El Ouali A, Taia S (2019) Hydrological modeling of water and soil resources in the basin upstream of the Allal El Fassi dam (Upper Sebou watershed, Morocco). Model Earth Syst Environ 5(4):1163–1177. https://doi.org/10.1007/s40808-019-00621-y

    Article  Google Scholar 

  • Bouslihim Y, Rochdi A, El Amrani Paaza N, Liuzzo L (2019) Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust watershed (Morocco). J Afr Earth Sc 160:103616. https://doi.org/10.1016/j.jafrearsci.2019.103616

    Article  Google Scholar 

  • Bouslihim Y, Rochdi A, Paaza NEA (2020) Combining SWAT model and regionalization approach to estimate soil erosion under limited data availability conditions. Eurasian Soil Sci 53(9):1280–1292. https://doi.org/10.1134/S1064229320090021

    Article  Google Scholar 

  • Briak H, Moussadek R, Aboumaria K, Mrabet R (2016) Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. Int Soil Water Conserv Res 4(3):177–185. https://doi.org/10.1016/j.iswcr.2016.08.002

    Article  Google Scholar 

  • Brouziyne Y, Abouabdillah A, Bouabid R, Benaabidate L, Oueslati O (2017) SWAT manual calibration and parameters sensitivity analysis in a semi-arid watershed in North-western Morocco. Arab J Geosci 10(19):427. https://doi.org/10.1007/s12517-017-3220-9

    Article  Google Scholar 

  • Buakhao W, Kangrang A (2016) DEM resolution impact on the estimation of the physical characteristics of watersheds by using SWAT. Adv Civil Eng. https://doi.org/10.1155/2016/8180158

    Article  Google Scholar 

  • Cao W, Bowden WB, Davie T, Fenemor A (2003) Application of SWAT in a large mountainous catchment with high spatial variability. 2003 Int SWAT Confer 37

  • Carvalho-Santos C, Monteiro AT, Azevedo JC, Honrado JP, Nunes JP (2017) Climate change impacts on water resources and reservoir management : Uncertainty and adaptation for a mountain catchment in northeast Portugal. Water Resour Manage 31(11):3355–3370

    Article  Google Scholar 

  • Chaplot V (2005) Impact of DEM mesh size and soil map scale on SWAT runoff sediment and NO3–N loads predictions. J Hydrol 312(1–4):207–222. https://doi.org/10.1016/j.jhydrol.2005.02.017

    Article  Google Scholar 

  • Chaubey I, Cotter AS, Costello TA, Soerens TS (2005) Effect of DEM data resolution on SWAT output uncertainty. Hydrol Process Intl J 19(3):621–628

    Article  Google Scholar 

  • Chen PY, Di Luzio M, Arnold JG (2005) Spatial assessment of two widely used land-cover datasets over the continental US. IEEE Trans Geosci Remote Sens 43(10):2396–2404. https://doi.org/10.1109/TGRS.2005.854308

    Article  Google Scholar 

  • Dey P, Mishra A (2017) Separating the impacts of climate change and human activities on streamflow : A review of methodologies and critical assumptions. J Hydrol 548:278–290. https://doi.org/10.1016/j.jhydrol.2017.03.014

    Article  Google Scholar 

  • El Harraki W, Ouazar D, Bouziane A, El Harraki I, Hasnaoui D (2021) Streamflow prediction upstream of a dam using SWAT and assessment of the impact of land use spatial resolution on model performance. Environm Process 8(3):1165–1186

    Article  Google Scholar 

  • Fadil A, Rhinane H, Kaoukaya A, Kharchaf Y, Bachir OA (2011) Hydrologic modeling of the Bouregreg watershed (Morocco) using GIS and SWAT model. J Geogr Inf Syst 03(04):279–289. https://doi.org/10.4236/jgis.2011.34024

    Article  Google Scholar 

  • Fan J, Galoie M, Motamedi A, Huang J (2020) Assessment of land cover resolution impact on flood modeling uncertainty. Hydrol Res 52(1):78–90. https://doi.org/10.2166/nh.2020.043

    Article  Google Scholar 

  • Ferrant S, Caballero Y, Perrin J, Gascoin S, Dewandel B, Aulong S, Dazin F, Ahmed S, Maréchal J-C (2014) Projected impacts of climate change on farmers’ extraction of groundwater from crystalline aquifers in South India. Sci Rep 4(1):1–10

    Article  Google Scholar 

  • Ge W, Cheng Q, Tang Y, Jing L, Gao C (2018) Lithological classification using sentinel-2A data in the Shibanjing ophiolite complex in Inner Mongolia, China. Remote Sens 10(4):638. https://doi.org/10.3390/rs10040638

    Article  Google Scholar 

  • Geza M, McCray JE (2008) Effects of soil data resolution on SWAT model stream flow and water quality predictions. J Environ Manage 88(3):393–406

    Article  Google Scholar 

  • Griesbach JC, Ruiz Sinoga JD, Giordano A, Berney O, Gallart F, Rojo Serrano L, Pavasovic A (1997) Guidelines for mapping and measurement of rainfall-induced erosion processes in the Mediterranean costal areas

  • Hachemaoui A, Elouissi A, Benzater B, Fellah S (2022) Assessment of the hydrological impact of land use/cover changes in a semi-arid basin using the SWAT model (case of the Oued Saïda basin in western Algeria). Model Earth Syst Environ. https://doi.org/10.1007/s40808-022-01422-6

    Article  Google Scholar 

  • Hirt C, Filmer MS, Featherstone WE (2010) Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian J Earth Sci 57(3):337–347. https://doi.org/10.1080/08120091003677553

    Article  Google Scholar 

  • Jha MK, Gassman PW, Arnold JG (2007) Water quality modeling for the Raccoon River watershed using SWAT. Trans ASABE 50(2):479–493

    Article  Google Scholar 

  • Jia K, Wei X, Gu X, Yao Y, Xie X, Li B (2014) Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int 29(8):941–951. https://doi.org/10.1080/10106049.2014.894586

    Article  Google Scholar 

  • Kalyanapu AJ, Burian SJ, McPherson TN (2009) Effect of land use-based surface roughness on hydrologic model output. J Spat Hydrol 9(2):51–71

    Google Scholar 

  • Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. https://doi.org/10.5194/adgeo-5-89-2005

    Article  Google Scholar 

  • Krysanova V, Srinivasan R (2015) Assessment of climate and land use change impacts with SWAT. Springer

    Book  Google Scholar 

  • Kumar S, Merwade V (2009) Impact of watershed subdivision and soil data resolution on SWAT model calibration and parameter uncertainty 1. JAWRA J Am Water Resour Assoc 45(5):1179–1196

    Article  Google Scholar 

  • Lamia E, Soufiane T, Souad H, Bouabid E, Jamal C, Souad Mrabet, Taj-Eddine K (2020) Semi-distributed modeling of a large scale hydrological system using SWAT model. 2020 IEEE 2nd international conference on electronics, control, optimization and computer science (ICECOCS)https://doi.org/10.1109/ICECOCS50124.2020.9314540

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241. https://doi.org/10.1029/1998WR900018

    Article  Google Scholar 

  • Li Z, Xu Z, Shao Q, Yang J (2009) Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrol Process 23(19):2744–2753. https://doi.org/10.1002/hyp.7371

    Article  Google Scholar 

  • Li Y, Chang J, Luo L, Wang Y, Guo A, Ma F, Fan J (2019) Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrol Res 50(1):244–261

    Article  Google Scholar 

  • Lin S, Jing C, Chaplot V, Yu X, Zhang Z, Moore N, Wu J (2010) Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients. Hydrol Earth Syst Sci Discuss 7(4):4411–4435

    Google Scholar 

  • M’Barek SA, Rochdi A, Bouslihim Y, Miftah A (2021) Multi‐site calibration and validation of SWAT model for hydrologic modeling and soil erosion estimation: a case study in El Grou watershed, Morocco. Ecol Eng Environl Technol 22(6): 45–52. https://doi.org/10.12912/27197050/141593

  • Malik MA, Dar AQ, Jain MK (2022) Modelling streamflow using the SWAT model and multi-site calibration utilizing SUFI-2 of SWAT-CUP model for high altitude catchments, NW Himalaya’s. Model Earth Syst Environ 8(1):1203–1213. https://doi.org/10.1007/s40808-021-01145-0

    Article  Google Scholar 

  • Markhi A, Laftouhi N, Grusson Y, Soulaimani A (2019) Assessment of potential soil erosion and sediment yield in the semi-arid N′fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophys 67(1):263–272. https://doi.org/10.1007/s11600-019-00251-z

    Article  Google Scholar 

  • Milewski A, Seyoum WM, Elkadiri R, Durham M (2020) Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco. Geosciences 10(1):13. https://doi.org/10.3390/geosciences10010013

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transact ASABE 50(3): 885‑900. https://doi.org/10.13031/2013.23153

  • Mosbahi M, Benabdallah S, Boussema MR (2013) Assessment of soil erosion risk using SWAT model. Arab J Geosci 6(10):4011–4019

    Article  Google Scholar 

  • Nachtergaele F, van Velthuizen H, Batjes N, Dijkshoorn K, van V, Fischer G, Jones A, Montanarella L, Petri M, Prieler S, Teixeira E, Wiberg D (2010) The harmonized world soil database. 4

  • Narsimlu B, Gosain AK, Chahar BR (2013) Assessment of future climate change impacts on water resources of Upper Sind River Basin, India using SWAT model. Water Resour Manag 27(10):3647–3662

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute

  • Nguyen H-T (2012) Apport de la modélisation hydrologique distribuée à la gestion intégrée par bassin versant des ressources en eau. [Phd, Université du Québec, Institut national de la recherche scientifique]. http://espace.inrs.ca/id/eprint/1875/

  • Niraula R, Kalin L, Wang R, Srivastava P, Srivastava P (2011) Determining nutrient and sediment critical source areas with SWAT: effect of lumped calibration. Transact ASABE (American Society of Agricultural and Biological Engineers) https://doi.org/10.13031/2013.41262

  • Paul PK, Zhang Y, Ma N, Mishra A, Panigrahy N, Singh R (2021) Selecting hydrological models for developing countries : Perspective of global, continental, and country scale models over catchment scale models. J Hydrol 600:126561. https://doi.org/10.1016/j.jhydrol.2021.126561

    Article  Google Scholar 

  • Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA (2010) Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT). Desalination 250(1):274–286

    Article  Google Scholar 

  • Ponce VM, Hawkins RH (1996) Runoff curve number : Has it reached maturity? J Hydrol Eng 1(1):11–19

    Article  Google Scholar 

  • Pour AB, Hashim M (2015) Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. J Taibah Univer Scie 9(2):155–166. https://doi.org/10.1016/j.jtusci.2014.11.008

    Article  Google Scholar 

  • Rajan Girija R, Mayappan S (2019) Mapping of mineral resources and lithological units : A review of remote sensing techniques. Int J Image Data Fusion 10(2):79–106. https://doi.org/10.1080/19479832.2019.1589585

    Article  Google Scholar 

  • Risal A, Parajuli PB, Dash P, Ouyang Y, Linhoss A (2020) Sensitivity of hydrology and water quality to variation in land use and land cover data. Agric Water Manag 241:106366. https://doi.org/10.1016/j.agwat.2020.106366

    Article  Google Scholar 

  • Roy DP, Wulder MA, Loveland TR, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Zhu Z (2014) Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y-T, Chuang H, Juang H-MH, Sela J, Goldberg M (2010) The NCEP Climate Forecast System Reanalysis. Bull Am Meteor Soc 91(8):1015–1058. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Santhi C, Kannan N, Arnold JG, Di Luzio M (2008) Spatial calibration and temporal validation of flow for regional scale hydrologic modeling 1. JAWRA J Am Water Resour Assoc 44(4):829–846

    Article  Google Scholar 

  • Santy S, Mujumdar P, Bala G (2020) Potential impacts of climate and land use change on the water quality of Ganga River around the industrialized Kanpur region. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Schuol J, Abbaspour KC (2006) Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Adv Geosci 9:137–143. https://doi.org/10.5194/adgeo-9-137-2006

    Article  Google Scholar 

  • Shawul AA, Alamirew T, Dinka MO (2013) Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia. Hydrol Earth Syst Sci Discuss 10(11):13955–13978

    Google Scholar 

  • Shrestha S, Htut AY (2016) Land Use and Climate Change Impacts on the Hydrology of the Bago River Basin, Myanmar. Environl Model Assessm 21(6):819–833. https://doi.org/10.1007/s10666-016-9511-9

    Article  Google Scholar 

  • Stackhouse P (2006) Prediction of worldwide energy resources. NASA Langley Res. Ctr., Hampton, VA

  • Tan ML, Ficklin DL, Dixon B, Yusop Z, Chaplot V (2015) Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Appl Geogr 63:357–368

    Article  Google Scholar 

  • Tessema SM (2011) Hydrological modeling as a tool for sustainable water resources management : A case study of the Awash River Basin. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33617

  • Tian J, Guo S, Deng L, Yin J, Pan Z, He S, Li Q (2021) Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River basin, China. Scient Rep 11(1):7879. https://doi.org/10.1038/s41598-021-86961-1

    Article  Google Scholar 

  • Tibebe D, Bewket W (2011) Surface runoff and soil erosion estimation using the SWAT model in the Keleta watershed, Ethiopia. Land Degrad Develop 22(6):551–564

    Article  Google Scholar 

  • USDA S (1972) National engineering handbook, section 4 : Hydrology. Washington, DC

  • van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R (2006) A global sensitivity analysis tool for the parameters of multi-variable catchment models. J Hydrol 324(1):10–23. https://doi.org/10.1016/j.jhydrol.2005.09.008

    Article  Google Scholar 

  • Wang Q, Shi W, Li Z, Atkinson PM (2016) Fusion of Sentinel-2 images. Remote Sens Environ 187:241–252. https://doi.org/10.1016/j.rse.2016.10.030

    Article  Google Scholar 

  • Wang Y, Bian J, Zhao Y, Tang J, Jia Z (2018) Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT. Sci Rep 8(1):1–13

    Google Scholar 

  • Welde K, Gebremariam B (2017) Effect of land use land cover dynamics on hydrological response of watershed : Case study of Tekeze Dam watershed, northern Ethiopia. Int Soil Water Conserv Res 5(1):1–16. https://doi.org/10.1016/j.iswcr.2017.03.002

    Article  Google Scholar 

  • Woldemariam GW, Iguala AD, Tekalign S, Reddy RU (2018) Spatial modeling of soil erosion risk and its implication for conservation planning: the case of the gobele watershed, East Hararghe Zone, Ethiopia. Land 7(1):25. https://doi.org/10.3390/land7010025

    Article  Google Scholar 

  • Ye X, Zhang Q, Viney NR (2011) The effect of soil data resolution on hydrological processes modelling in a large humid watershed. Hydrol Process 25(1):130–140

    Article  Google Scholar 

  • Zhang X, Srinivasan R, Van Liew M (2008) Multi-site calibration of the SWAT model for hydrologic modeling. Trans ASABE 51(6):2039–2049

    Article  Google Scholar 

  • Zhang P, Liu R, Bao Y, Wang J, Yu W, Shen Z (2014) Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Res 53:132–144

    Article  Google Scholar 

  • Zhu C, Li Y (2014) Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the Little River Watershed, Tennessee. Intl Soil Water Conserv Res 2(2):11–21

    Article  Google Scholar 

Download references

Funding

This study has not received any funding from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Bouslihim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait M’Barek, S., Bouslihim, Y., Rochdi, A. et al. Effect of LULC data resolution on hydrological and erosion modeling using SWAT model. Model. Earth Syst. Environ. 9, 831–846 (2023). https://doi.org/10.1007/s40808-022-01537-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01537-w

Keywords

Navigation