Skip to main content
Log in

Numerical groundwater flow modelling under changing climate in Abaya–Chamo lakes basin, Rift Valley, Southern Ethiopia

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Ongoing socio-economic developments and climatic change have been pressurizing the groundwater resource availability in the Abaya–Chamo lakes basin, Ethiopian Rift valley. The primary goals of the present study are: (1) to simulate the groundwater gradient and flow direction, (2) to calculate the groundwater balances and flux of the sub-major river basins under the water budget code of the MODFLOW, and (3) to predict the future groundwater levels of the lake's basin under a projected changing climate. The numerical groundwater flow of the Abaya–Chamo lakes basin aquifer system is simulated using the USGS three-dimensional finite-difference groundwater flow model MODFLOW-2005 with Block centered flow packages (BCF). The following datasets, such as aquifer properties, geology, recharge, discharge, topography, etc., were used to simulate the present model. The calibrated steady-state groundwater flow modeling simulation of the Abaya–Chamo lakes basin also confirmed the through-flow system in terms of groundwater gradient and flow direction, on which groundwater flow happens from the plateau toward the floor into the lakes from both directions with a high gradient exist in the escarpment. The present study provides a sound foundation for modern scientific direction in water resource evaluation by establishing integrated surface and groundwater models that change climatic conditions for sustainable water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu-Saleem A, Al-Zu’bi Y, Rimawi O, Al-Zu’bi J, Alouran N (2010) Estimation of water balance components in the Hasa Basin with GIS-based WetSpass model. J Agron 9:119–125

    Article  Google Scholar 

  • Al Kuisi M, El-Naqa A (2013) GIS based spatial groundwater recharge estimation in the Jafr basin, Jordan—application of WetSpass models for arid regions. Revista Mexicana De Ciencias Geológicas 30:96–109

    Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling. Academic Press, Inc., San Diego, p 381

    Google Scholar 

  • Azeref BG, Bushira KM (2020) Numerical groundwater flow modeling of the Kombolcha catchment northern Ethiopia. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-00753-6

    Article  Google Scholar 

  • Bakker M, Bartholomeus PR, Ferré APT (2013) Preface groundwater recharge: processes and quantification. Hydrol Earth Syst Sci 17:2653–2655

    Article  Google Scholar 

  • Barron VO, Crosbie SR, Dawes RW, Charles PS, Pickett T, Donn JM (2012) Climatic controls on diffuse groundwater recharge across Australia. Hydrol Earth Syst Sci 16:4557–4570

    Article  Google Scholar 

  • Bekele S (2001) Investigation of water resources aimed at multi-objective development with respect to limited data situation: The case of Abaya-Chamo basin, Ethiopia. –Institut für Wasserbau und Technische Hydromechanik, Wasserbauliche Mitteilungen, 19. Dresden.

  • Bushira KM, Hernandez JR, Sheng Z (2017) Surface and groundwater flow modeling for calibrating steady state using MODFLOW in Colorado River Delta, Baja California Mexico. Model Earth Syst Environ 3:815–824. https://doi.org/10.1007/s40808-017-0337-5

    Article  Google Scholar 

  • Chenini I, Ben Mammou A, El May M (2009) Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in central Tunisia (Maknassy Basin). Water Resour Manage 9:1–19

    Google Scholar 

  • Chiang WH, Kinzelbach W (2001) 3D—groundwater modeling with PMWIN. A simulation system for modeling groundwater flow and pollution. Springer, Berlin, p 346

    Google Scholar 

  • Chung IM, Kim NW, Lee J, Sophocleous M (2010) Assessing distributed groundwater recharge rate using integrated surface water groundwater modeling: application to Mihocheon watershed, South Korea. Hydrogeol J 18:1253–1264

    Article  Google Scholar 

  • Dams J, Woldeamlak TS, Batelaan O (2008) Predicting land-use change and its impact on the groundwater system of the KleineNete catchment, Belgium. Hydrol Earth Syst Sci 12:1369–1385

    Article  Google Scholar 

  • Demis Alemirew (2009) Detailed Hydrogeological and Hydro Geophysical Study of Ketar Basin, Central Ethiopian Rift (Lakes Region)

  • El Idrysy H, De Smedt F (2006) Modelling groundwater flow of the Trifa aquifer, Morocco. Hydrogeol J 14:1265–1276

    Article  Google Scholar 

  • Gebere A, Kawo NS, Karuppannan S, Aster TF, Paolo P (2020) Numerical modeling of groundwater flow system in the Modjo River catchment, Central Ethiopia. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-01040-0

    Article  Google Scholar 

  • Halcrow (2008) Rift Valley Lakes Basin Integrated Resources Development Master Plan Study Project, Draft Phase 2 Report Part II Prefeasibility Studies, Halcrow Group Limited, and Generation Integrated Rural Development (GIRD) consultants. Unpublished report. AA

  • Harbaugh AW (2005) MODFLOW-2005, the U.S. Geological Survey modular groundwater model—The groundwater flow process: U.S. Geological Survey Techniques and Methods 6–A16

  • Hassen I, Slama F, Bouhlila R (2021) Groundwater recharge assessment in an arid region through chloride mass balance and unsaturated numerical modelling: the Kasserine Aquifer System. Arab J Geosci 14:2282. https://doi.org/10.1007/s12517-021-08522-0

    Article  Google Scholar 

  • Jafarzadeh A, Khashei-Siuki A, Pourreza-Bilondi M (2021) Performance assessment of model averaging techniques to reduce structural uncertainty of groundwater modeling. Water Resour Manage. https://doi.org/10.1007/s11269-021-03031-x

    Article  Google Scholar 

  • JICA (2012) The study on groundwater resources assessment in the Rift Valley Lakes Basin in Ethiopia, JICA, Kokusai Kogyo Co., Ltd., MoWE), Ethiopia. Final Report (Main Report)

  • Kefale T, Jiri S (2013) Hydrogeological and hydrochemical maps of Hossaina NB 37–2. Explanatory notes. AQUATEST a.s., Geologicka 4, 152 00 Prague 5, Czech Rep

  • Khadri SFR, Pande C (2016) Ground water flow modeling for calibrating steady state using MODFLOW software: a case study of Mahesh River basin, India. Model Earth Syst Environ 2:39. https://doi.org/10.1007/s40808-015-0049-7

    Article  Google Scholar 

  • Marnani SA, Chitsazan M, Mirzaei Y, Jahandideh B, Blvd G (2010) Groundwater resources management in various scenarios using numerical model. Am J Geosci 1(1):21–26

    Google Scholar 

  • McDonald MG, Harbaugh AW (1984) A modular three-dimensional finite-difference ground-water flow model: U.S.Geological Survey Open-File Report 83-875, p 528

  • Mengistu HA, Demlie MB, Abiye TA, Xu Y, Kanyerere T (2019) Groundwater for sustainable development conceptual hydrogeological and numerical groundwater flow modelling around the Moab Khutsong deep gold mine, South Africa. Groundw Sustain Dev 9:100266. https://doi.org/10.1016/j.gsd.2019.100266

    Article  Google Scholar 

  • Mogheir Y, Ajjur S (2013) Effects of climate change on groundwater resources (Gaza strip case study). Int J Sustain Energy Environ 1:136–149

    Google Scholar 

  • Moiwo JP, Lu W, Zhao Y, Yang Y, Yang Y (2010) Impact of land use on distributed hydrological processes in the semi-arid wetland ecosystem of Western Jilin. Hydrol Process 24:492–503

    Article  Google Scholar 

  • Molla D, Tegaye T (2019) Multivariate analysis of baseflow index in complex rift margin catchments: the case of Abaya-Chamo lakes basin, southern Ethiopia. Groundw Sustain Dev 9:100236. https://doi.org/10.1016/j.gsd.2019.100236

    Article  Google Scholar 

  • Molla D, Tegaye T, Fletcher C (2019) Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using a spatially-distributed water balance model. J Hydrol Reg Stud 24:100615. https://doi.org/10.1016/j.ejrh.2019.100615

    Article  Google Scholar 

  • Park C, Seo J, Lee J, Ha K, Koo MH (2014) A distributed water balance approach to groundwater recharge estimation for Jeju Volcanic Island, Korea. Geosci J 18:193–207

    Article  Google Scholar 

  • Post VEA, Galvis SC, Sinclair PJ, Werner AD (2019) Evaluation of management scenarios for potable water supply using script-based numerical groundwater models of a freshwater lens. J Hydrol 571:843–855. https://doi.org/10.1016/j.jhydrol.2019.02.024

    Article  Google Scholar 

  • Prasad YS, Rao YRS (2018) Groundwater flow modelling of a micro-watershed in the upland area of East Godavari district, Andhra Pradesh, India. Model Earth Syst Environ 4(3):1007–1019. https://doi.org/10.1007/s40808-018-0502-5

    Article  Google Scholar 

  • Raazia S, Dar AQA (2021) Numerical model of groundwater flow in Karewa-Alluvium aquifers of NW Indian Himalayan Region. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01126-3

    Article  Google Scholar 

  • Rwanga SS (2013) A review on groundwater recharge estimation using WetSpass model. Proceedings of the International Conference on Civil and Environmental Engineering (CEE'2013), Johannesburg, Nov. 27–28, p. 156–160

  • Scanlon RB, Keese EK, Flint LA, Flint EL, Gaye BC, Edmunds MW, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370

    Article  Google Scholar 

  • Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeol J 14:433–443

    Article  Google Scholar 

  • Tammal M, Kili M, El Gasmi EH, Mridekh A, El Mansouri B (2014) Modeling multi-aquifer system of Tadla basin and plateau of phosphates. Int J Innov Sci Res 6:172–180

    Google Scholar 

  • Tilahun K, Merkel JB (2009) Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeol J 17:1443–1457

    Article  Google Scholar 

  • Wang S, Shao J, Song X, Zhang Y, Huo Z, Zhou X (2008) Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environ Geol 55:1449–1462

    Article  Google Scholar 

  • Wang Y, Lei X, Liao W, Jiang Y, Huang X, Liu J, Song X, Wang H (2012) Monthly spatial distributed water resources assessment: a case study. Comput Geosci J 45:319–330

    Article  Google Scholar 

  • Winkler A, Krabaugh J, Fleage J, Glanz M, Gordon A, Jacobs B, Maga M, Muldoon K, Pan A, Pyne L, Richmond B, Ryan T, Selffert ER, Sen S, Todd L, Wlemann MC (2003) Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. Nature 426:549–552

    Article  Google Scholar 

  • Woldeamlak TS, Batelaan O, De Smedt F (2007) Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol J 15:891–901

    Article  Google Scholar 

  • Yeh FH, Lee HC, Hsu CK, Chang HP (2009) GIS for the assessment of the groundwater recharge potential zone. Environ Geol 58:185–195

    Article  Google Scholar 

  • Yun P, Huili G, Demin Z, Xiaojuan L, Nobukaz N (2011) Impact of land use change on groundwater recharge in Guishui River Basin, China. Chin Geogra Sci 21:734–743

    Article  Google Scholar 

  • Zammouri M, Siegfried T, El-Fahem T, Kriâa S, Kinzelbach W (2007) Salinization of groundwater in the Nefzawa oases region, Tunisia: results of a regional-scale hydrogeologic approach. Hydrogeol J 15:1357–1375

    Article  Google Scholar 

  • Zammouri M, Jarraya-Horriche F, Odo BO, Benabdallah S (2014) Assessment of the effect of a planned marina on groundwater quality in Enfida plain (Tunisia). Arab J Geosci 7:1187–1203

    Article  Google Scholar 

  • Zektser IS, Everett LG (2006) Groundwater resources of the world and their use. National Groundwater Association Press, Westerville, p 346

    Google Scholar 

  • Zhou Y, Li W (2011) A review of regional groundwater flow modeling. Geosci Front 2(2):205–214. https://doi.org/10.1016/j.gsf.2011.03.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the School of Earth Sciences, Addis Ababa University and Faculty of Meteorology and Hydrology, Water Technology Institute, Arba Minch University, Ethiopia for the support of the research. Additionally, we are thankful to the National Meteorological Agency, Ministry of Water Irrigation, Electricity, and Geological Survey of Ethiopia for providing relevant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radakrishnan Duraisamy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

No formal approval is required for this study since this article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, D., Ayenew, T., Fletcher, C.G. et al. Numerical groundwater flow modelling under changing climate in Abaya–Chamo lakes basin, Rift Valley, Southern Ethiopia. Model. Earth Syst. Environ. 8, 3985–3999 (2022). https://doi.org/10.1007/s40808-021-01342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-021-01342-x

Keywords

Navigation