Stability analysis and the Hopf bifurcation
Here we examine qualitative behavior of the model (1) by analyzing local stability of equilibrium points and Hopf bifurcation, which presents the behavior of model (1) by a small change of the solutions as reaction to changes in the particular parameter. As time delays have the significant effect in complexity and dynamics of this model (1), we will assume them as the parameter of bifurcation. Now we examine stability at endemic equilibrium point, the Jacobian matrix at \(E^*\) is
$$\begin{aligned} J^*=\left( \begin{array}{lllll} -\kappa &{} 0 &{} 0 &{} b &{} 0 \\ G_1 &{} -d &{} 0 &{} 0 &{} 0 \\ G_2 e^{-\lambda \tau _1}+G_1 &{} e^{-\lambda \tau _1} G_3 &{} -a &{} 0 &{} 0 \\ 0 &{} 0 &{} a &{} e^{-\lambda \tau _2} G_4-\psi &{} 0 \\ 0 &{} 0 &{} 0 &{} r e^{-\lambda \tau _2}+r &{}-\gamma \\ \end{array} \right) \end{aligned}$$
(11)
where
$$\begin{aligned} G_1&=-\frac{\eta \lambda }{d},\\ G_2&=\eta X^*,\\ G_3&=\eta V^*,\\ G_4&=-F^* r-\psi . \end{aligned}$$
(12)
The characteristic equation at endemic equilibrium point is
$$\begin{aligned} \upsilon _1(\lambda )+e^{-\lambda \tau _1}\upsilon _2(\lambda )+e^{-\lambda \tau _2}\upsilon _3(\lambda )=0 \end{aligned}$$
(13)
where
$$\begin{aligned} \upsilon _1(\lambda )&=\lambda ^5+\alpha _1 \lambda ^4+\alpha _2 \lambda ^3+\alpha _3 \lambda ^2+\alpha _4 \lambda +\alpha _5,\\ \upsilon _2(\lambda )&=\beta _1 \lambda ^4+\beta _2 \lambda ^3+\beta _3 \lambda ^2+\beta _4 \lambda +\beta _5,\\ \upsilon _3(\lambda )&=\gamma _1 \lambda ^4+\gamma _2 \lambda ^3+\gamma _3 \lambda ^2+\gamma _4 \lambda +\gamma _5. \end{aligned}$$
(14)
The coefficients are
$$\begin{aligned} \alpha _1&=a+\gamma +d+\kappa +\psi ,\\ \alpha _2&=a (\gamma +d+\kappa +\psi )+\psi (\gamma +\kappa )+\gamma \kappa +d (\gamma +\kappa +\psi ),\\ \alpha _3&=-a b G_1+a (\gamma (\kappa +\psi )+d (\gamma +\kappa +\psi )+\kappa \psi )+\gamma \kappa \psi +d \psi (\gamma +\kappa )+\gamma d \kappa ,\\ \alpha _4&=-a b G_1 (\gamma +d)+\psi (a \kappa (\gamma +d)+a \gamma d+\gamma d \kappa )+a \gamma d \kappa ,\\ \alpha _5&=a \gamma d \left( \kappa \psi -b G_1\right) ,\\ \beta _1&=0,\\ \beta _2&=0,\\ \beta _3&=-a b G_2,\\ \beta _4&=-ab\left( G_2 (\gamma +d)+G_1 G_3\right. ),\\ \beta _5&=aa b \gamma \left( -d G_2-G_1 G_3\right) ,\\ \gamma _1&=-G_4,\\ \gamma _2&=-G_4 (a+\gamma +d+\kappa ),\\ \gamma _3&=-G_4 (a (\gamma +d+\kappa )+\gamma \kappa +d (\gamma +\kappa )),\\ \gamma _4&=-G_4 (a \kappa (\gamma +d)+a \gamma d+\gamma d \kappa ),\\ \gamma _5&=a \gamma d G_4 \kappa . \end{aligned}$$
(15)
Here, we discuss stability of endemic equilibrium and Hopf bifurcation conditions of the threshold parameters such as \(\tau _1\) and \(\tau _2\) by assuming different cases.
Case 1. When both delay \(\tau _1\),and \(\tau _2\) are zero equation (13) become
$$\begin{aligned}&\lambda ^5+\lambda ^4 \vartheta _1+\lambda ^3 \vartheta _2+\lambda ^2 \vartheta _3+\lambda \vartheta _4+\vartheta _5=0. \end{aligned}$$
(16)
Endemic equilibrium is asymptotically stable by Routh-Hurwitz Criteria if
$$\begin{aligned}&(R_1) (\alpha _i+\beta _i+\gamma _i)>0, \vartheta _1\vartheta _2\vartheta _3>\vartheta _2^2+\vartheta _1^2\vartheta _4,\\&and\\&(\vartheta _1\vartheta _4-\vartheta _5)(\vartheta _1\vartheta _2\vartheta _3\vartheta _3^2-\vartheta _1^2\vartheta _4)>\vartheta _1\vartheta _5^2+\vartheta _5(\vartheta _12-\vartheta _3^2) \end{aligned}$$
(17)
holds, then all the roots are negative. Where \(\vartheta _i=\left( \alpha _i+\beta _i+\gamma _i\right)\) and \(i=1:5\).
Case 2. For \(\tau _1=0\) and \(\tau _2\) is a real positive number, equation (13) turn out to be
$$\begin{aligned}&\lambda ^5+\lambda ^4 \left( \alpha _1+\beta _1\right) +\lambda ^3 \left( \alpha _2+\beta _2\right) +\lambda ^2 \left( \alpha _3+\beta _3\right) +\lambda \left( \alpha _4+\beta _4\right) +\alpha _5+\beta _5+\\&e^{-\lambda \tau _2}\left( \gamma _1 \lambda ^4+\gamma _2 \lambda ^3+\gamma _3 \lambda ^2+\gamma _4 \lambda +\gamma _5\right) =0. \end{aligned}$$
(18)
We suppose that there exists real positive number \(\psi\) for some value of \(\tau _1\) in such a way that \(\lambda = i\psi\) is the root of (18), then we have two equations
$$\begin{aligned} \psi ^4 \left( \alpha _1+\beta _1\right) -\psi ^2 \left( \alpha _3+\beta _3\right) +\alpha _5+\beta _5&=- \gamma _1 \psi ^4\cos \tau _2 \psi + \gamma _3 \psi ^2\cos \tau _2 \psi \\&\quad - \gamma _5\cos \tau _2 \psi -\gamma _2 \psi ^3\sin \tau _2 \psi -\gamma _4 \psi \sin \tau _2 \psi ,\\ -\psi ^3 \left( \alpha _2+\beta _2\right) +\psi \left( \alpha _4+\beta _4\right) +\psi ^5&= \gamma _2 \psi ^3\cos \tau _2 \psi - \gamma _4 \psi \cos \tau _2 \psi +\gamma _1 \psi ^4\sin \tau _2 \psi \\&\quad -\gamma _3 \psi ^2\sin \tau _2 \psi +\gamma _5 \sin \tau _2 \psi . \end{aligned}$$
(19)
After simplifying these equation we have
$$\begin{aligned} \psi ^{10}+\psi ^8 \varkappa _1+\psi ^6 \varkappa _2+\psi ^4 \varkappa _3+\psi ^2 \varkappa _4+\varkappa _5=0 \end{aligned}$$
(20)
where the constants are
$$\begin{aligned} \varkappa _1&=\left( \alpha _1+\beta _1\right) {}^2-2 \left( \alpha _2+\beta _2\right) -\gamma _1^2,\\ \varkappa _2&=\left( \alpha _2+\beta _2\right) {}^2-2 \left( \alpha _1+\beta _1\right) \left( \alpha _3+\beta _3\right) +2 \alpha _4+2 \beta _4-\gamma _2^2+2 \gamma _1 \gamma _3,\\ \varkappa _3&=\left( \alpha _3+\beta _3\right) {}^2-2 \left( \alpha _2+\beta _2\right) \left( \alpha _4+\beta _4\right) +2 \left( \alpha _1+\beta _1\right) \left( \alpha _5+\beta _5\right) -\gamma _3^2-2 \left( \gamma _2 \gamma _4+\gamma _1 \gamma _5\right) ,\\ \varkappa _4&=\left( \alpha _4+\beta _4\right) {}^2-2 \left( \alpha _3+\beta _3\right) \left( \alpha _5+\beta _5\right) -\gamma _4^2+2 \gamma _3 \gamma _5,\\ \varkappa _5&=\left( \alpha _5+\beta _5\right) {}^2-\gamma _5^2. \end{aligned}$$
(21)
By rule of signs of Descartes, equation (19) has as a minimum one positive root if \((S_1)\left( \alpha _1+\beta _1\right) {}^2>2 \left( \alpha _2+\beta _2\right) +\gamma _1^2\) and \(\left( \alpha _5+\beta _5\right) {}^2<\gamma _5^2\) holds.
By eliminating \(\sin \tau _1 \psi\) form equation (19) we have
$$\begin{aligned} \tau _{2,j}=\dfrac{1}{\psi _0}\arccos [\frac{\rho _1 \rho _3+\rho _2 \rho _4}{\rho _1^2-\rho _2^2}]+\dfrac{2 \pi j}{\psi _0},j=0,1,2,\ldots \end{aligned}$$
(22)
where
$$\begin{aligned} \rho _1&=\gamma _2 \psi ^3+\gamma _4 \psi ,\\ \rho _2&=\gamma _1 \psi ^4-\gamma _3 \psi ^2+\gamma _5,\\ \rho _3&=-\psi ^3 \left( \alpha _2+\beta _2\right) +\psi \left( \alpha _4+\beta _4\right) +\psi ^5,\\ \rho _4&=\psi ^4 \left( \alpha _1+\beta _1\right) -\psi ^2 \left( \alpha _3+\beta _3\right) +\alpha _5+\beta _5. \end{aligned}$$
(23)
Differentiating equation (18) with respect to delay \((\tau _2)\) with the assumption of \(\psi =\psi _0\), then transversality form is obtain
$$\begin{aligned} Re(\dfrac{d \lambda }{d \tau _2})^{-1}=\frac{T_1 T_4-T_3 T_2}{T_4 T_2}, \end{aligned}$$
(24)
where
$$\begin{aligned} T_1&=\left( -3 \psi ^2 \left( \alpha _2+\beta _2\right) +\alpha _4+\beta _4+5 \psi ^4\right) \\&\qquad \left( \psi ^4 \left( \alpha _2+\beta _2\right) -\psi ^2 \left( \alpha _4+\beta _4\right) +\beta _5-\psi ^6\right) ,\\ T_2&=\left( \psi ^5 \left( \alpha _1+\beta _1\right) -\psi ^3 \left( \alpha _3+\beta _3\right) +\alpha _5 \psi \right) {}^2\\&\quad +\left( -\psi ^4 \left( \alpha _2+\beta _2\right) +\psi ^2 \left( \alpha _4+\beta _4\right) -\beta _5+\psi ^6\right) {}^2,\\ T_3&=\left( \gamma _4-3 \gamma _2 \psi ^2\right) \left( \gamma _2 \psi ^4-\gamma _4 \psi ^2\right) ,\\ T_4&= \left( \gamma _2 \psi ^4-\gamma _4 \psi ^2\right) {}^2-\left( \gamma _1 \psi ^5-\gamma _3 \psi ^3+\gamma _5 \psi \right) {}^2. \end{aligned}$$
(25)
The hopf bifurcation arise for delay \((\tau _2)\) if \(Re(\dfrac{d \lambda }{d \tau _2})^{-1}>0\). The above analysis is summarized in following theorem.
Theorem 3.1
Assume that \(R_1\) and \(S_1\) holds, where delay \(\tau _1=0\), in that case, there exist \(\tau _2>0\) such that \(E^*\) is locally asymptotically stable for \(\tau _2<\tau _2^*\) and unstable for \(\tau _2>\tau _2^*\), where \(\tau _2^*=\min \{\tau _{2,j}\}\) in equation (22). Furthermore, at \(\tau _2=\tau _2^*\) the model (1) undergoes Hopf bifurcation at endemic equilibrium point.
Case 3. When \(\tau _1> 0\) and \(\tau _2= 0\), in same procedure of case (2), we reach at subsequent theorem.
Theorem 3.2
For model (1) where \(\tau _2=0\), in that case, there exist \(\tau _1>0\) such that \(E^*\) is locally asymptotically stable for \(\tau _1<\tau _1^*\) and unstable for \(\tau _1>\tau _1^*\), where \(\tau _1^*=\min \{\tau _{1,j}\}\) in equation (26). Furthermore, at \(\tau _1=\tau _1^*\) the model (1) undergoes Hopf bifurcation at endemic equilibrium point,
$$\begin{aligned} \tau _{1,j}=\dfrac{1}{\psi _1}\arccos \{\frac{\delta _1 \delta _2+\delta _3 \delta _4}{\delta _1^2-\delta _3^2}\}+\dfrac{2 \pi j}{\psi _1},j=0,1,2,\ldots \end{aligned}$$
(26)
where
$$\begin{aligned} \delta _1&=\psi _1 \left( \beta _4 \psi _1 -\beta _2 \psi ^3_1\right) ,\\ \delta _2&=-\psi ^2_1 \left( \alpha _2+\gamma _2\right) +\alpha _4+\gamma _4+\psi ^4_1,\\ \delta _3&=-\beta _1 \psi ^4_1+\beta _3 \psi ^2_1-\beta _5,\\ \delta _4&=\psi ^4_1 \left( \alpha _1+\gamma _1\right) -\psi ^2_1 \left( \alpha _3+\gamma _3\right) +\alpha _5+\gamma _5. \end{aligned}$$
(27)
Case 4. When both \(\tau _1\) and \(\tau _2\) are positive. Then, suppose that \(\tau _2\) as variable and \(\tau _1\) is fixed parameter on stable interval. Assume that there exist a number \(\psi\) such that \(\lambda =i \psi\) is the root of (13), we obtain
$$\begin{aligned}&\alpha _1 \psi ^4-\alpha _3 \psi ^2+\alpha _5+\left( \beta _1 \psi ^4-\beta _3 \psi ^2+\beta _5\right) \cos \tau _1 \psi + \left( \beta _2 \psi ^3+\beta _4 \psi \right) \sin \tau _1 \psi \\&=\left( \gamma _2 \psi ^3-\gamma _4 \psi \right) \sin \tau _2 \psi - \left( \gamma _1 \psi ^4-\gamma _3 \psi ^2+\gamma _5\right) \cos \tau _2 \psi ,\\&-\alpha _2 \psi ^3+\alpha _4 \psi + \left( \beta _4 \psi -\beta _2 \psi ^3\right) \cos \tau _2 \psi +\left( -\beta _1 \psi ^4+\beta _3 \psi ^2-\beta _5\right) \sin \tau _2 \psi +\psi ^5\\&= \left( \gamma _2 \psi ^3-\gamma _4 \psi \right) \cos \tau _1 \psi +\left( \gamma _1 \psi ^4-\gamma _3 \psi ^2+\gamma _5\right) \sin \tau _1 \psi . \end{aligned}$$
(28)
After simplifying we have
$$\begin{aligned} \varsigma _5+\psi ^{10}+\psi ^8 \varsigma _1+\psi ^6 \varsigma _2+\psi ^4 \varsigma _3+\psi ^2 \varsigma _4=0. \end{aligned}$$
(29)
Where:
$$\begin{aligned} \varsigma _1&=\alpha _1^2-2 \alpha _2+\beta _1^2+2\left( \alpha _1 \beta _1-\beta _2\right) \cos \tau _1 \psi -\gamma _1^2,\\ \varsigma _2&=\alpha _2^2+\beta _2^2+2 \left( -\alpha _1 \alpha _3+\alpha _4-\beta _1 \beta _3+\alpha _2 \beta _2 \cos \tau _1\psi \right) \\&\quad -2 \left( \alpha _3 \beta _1+\alpha _1 \beta _3-\beta _4\right) \cos \tau _1\psi +2\gamma _1 \gamma _3-\gamma _2^2,\\ \varsigma _3&=2 \left( -\alpha _2 \alpha _4+\beta _1 \beta _5+\gamma _2 \gamma _4-\gamma _1 \gamma _5\right) +\alpha _3^2-\beta _2 \beta _4 \left( \cos \tau _1\psi ^2-\sin \tau _1\psi ^2\right) \\&\quad +2 \left( \alpha _1 \alpha _5+ \left( \alpha _5 \beta _1-\alpha _4 \beta _2+\alpha _3 \beta _3-\alpha _2 \beta _4+\alpha _1 \beta _5\right) \cos \tau _1\psi \right) +\beta _3^2-\gamma _3^2,\\ \varsigma _4&=\alpha _4^2+\beta _4^2+2 \left( -\alpha _3 \alpha _5-\beta _3 \beta _5+\left( -\alpha _5 \beta _3+\alpha _4 \beta _4-\alpha _3 \beta _5\right) \cos \tau _1\psi +\gamma _3 \gamma _5\right) -\gamma _4^2,\\ \varsigma _5&=-\alpha _4 \beta _1+\alpha _5^2+\beta _5^2+2 \alpha _5 \beta _5 \cos \tau _1\psi -\gamma _5^2. \end{aligned}$$
(30)
By applying rule of signs of Descartes equation (29) has minimum one positive root if \((S_2)\) \(\alpha _1^2-2 \alpha _2+\beta _1^2+2\left( \alpha _1 \beta _1-\beta _2\right) \cos \tau _1 \psi -\gamma _1^2>0\) and \(\varsigma _5<0\) holds. we have
$$\begin{aligned} \tau _{2,j}=\dfrac{1}{\psi _2}\arccos \{\frac{\rho _1 \rho _5-\rho _6 \rho _2}{\rho _1^2+\rho _2^2}\}+\dfrac{2 \pi j}{\psi _2}, j=0,1,2,\ldots \end{aligned}$$
(31)
with
$$\begin{aligned} \rho _5&=\alpha _2 \psi _2 ^3-\alpha _4 \psi _2 -\delta _1\cos \tau _1\psi _2-\delta _3 \sin \tau _1\psi _2-\psi _2 ^5,\\ \rho _6&=\alpha _1 \psi _2 ^4-\alpha _3 \psi _2 ^2+\alpha _5+ \delta _3\cos \tau _1\psi _2+\delta _1 \sin \tau _1\psi _2. \end{aligned}$$
(32)
For Hopf bifurcation \(\tau _1\) will be fixed and differentiate with respect to \(\tau _2\) in equation (28) by putting \(\tau _2=\tau _{2,0}\) at \(\psi =\psi _3\),
$$\begin{aligned} V_1(\dfrac{d\lambda }{d\tau _2}|\tau _2=\tau _{2,0})+V_2(\dfrac{d\psi }{d\tau _2}|\tau _2=\tau _{2,0})&=V_3,\\ V_2(\dfrac{d\lambda }{d\tau _2}|\tau _2=\tau _{2,0})-V_1(\dfrac{d\psi }{d\tau _2}|\tau _2=\tau _{2,0})&=V_4. \end{aligned}$$
(33)
where
$$\begin{aligned} V_1&=\left( \tau _{2,0} \left( \gamma _2 \psi _3 ^3-\gamma _4 \psi _3 \right) -4 \gamma _1 \psi _3 ^3+\psi _3 \left( \gamma _2 \psi _3 ^3-\gamma _4 \psi _3 \right) +2 \gamma _3 \psi _3 \right) \cos \tau _{2,0}\psi _3\\&\quad +\left( \tau _{2,0} \left( \gamma _1 \psi _3 ^4-\gamma _3 \psi _3 ^2+\gamma _5\right) +3 \gamma _2 \psi _3 ^2-\psi _3 \left( \gamma _1 \psi _3 ^4-\gamma _3 \psi _3 ^2+\gamma _5\right) -\gamma _4\right) \sin \tau _{2,0}\psi _3,\\ V_2&= \left( \tau _{2,0} \left( \gamma _1 \psi _3 ^4-\gamma _3 \psi _3 ^2+\gamma _5\right) +3 \gamma _2 \psi _3 ^2+\psi _3 \left( \gamma _1 \psi _3 ^4-\gamma _3 \psi _3 ^2+\gamma _5\right) -\gamma _4\right) \cos \tau _{2,0}\psi _3\\&\quad + \left( \tau _{2,0} \left( \gamma _2 \psi _3 ^3-\gamma _4 \psi _3 \right) -\psi _3 \left( \gamma _2 \psi _3 ^3-\gamma _4 \psi _3 \right) +4 \gamma _1 \psi _3 -2 \gamma _3 \psi _3 \right) \sin \tau _2\psi _3,\\ V_3&=3 \alpha _1 \psi _3 ^3-2 \alpha _3 \psi _3 + \left( \tau _1 \left( \beta _2 \psi _3 ^3+\beta _4 \psi _3 \right) +4 \beta _1 \psi _3 ^3-2 \beta _3 \psi _3 \right) \cos \tau _1\psi _3\\&\quad +\left( \left( 3 \beta _2 \psi _3 ^2+\beta _4\right) -\tau _1 \left( \beta _1 \psi _3 ^4-\beta _3 \psi _3 ^2+\beta _5\right) \right) \sin \tau _1\psi _3,\\ V_4&=-3 \alpha _2 \psi _3 ^2+\alpha _4+\left( \tau _1 \left( -\beta _1 \psi _3 ^4+\beta _3 \psi _3 ^2-\beta _5\right) \cos \tau _1\psi _3-3 \beta _2 \psi _3 ^2+\beta _4\right) \\&\quad +\left( -\tau _1 \left( \beta _4 \psi _3 -\beta _2 \psi _3 ^3\right) -4 \beta _1 \psi _3 ^3+2 \beta _3 \psi _3 \right) \sin \tau _1\psi _3+5 \psi _3 ^4. \end{aligned}$$
(34)
From equation (33) if \(\dfrac{d\lambda }{d\tau _2}>0\), then Hopf bifurcation occur at \(\tau _2=\tau _{2,0}\).
Theorem 3.3
If \(R_1\) and \(S_2\) holds with \(\tau _1 \in (0,\tau _1')\) then, there exists \(\tau _2'\) such that endemic equilibrium point is asymptotically stable for \(\tau _2 < \tau _2'\) and \(\tau _2 > \tau _2'\), where \(\tau _2'=\min \{\tau _{2,j}\}\) in (31). Furthermore, the model (1) undergoes Hopf bifurcation at \(\tau _2=\tau _2'\).
Theorem 3.4
If endemic equilibrium point \(E^*\) for \(\tau _2 \in (0,\tau _2')\) then, there exists \(\tau _1'\) such that endemic equilibrium point \(E^*\) is asymptotically stable for \(\tau _1 < \tau _1'\) and \(\tau _1 > \tau _1'\), where \(\tau _1'=\min \{\tau _{1,j}\}\) in (35). Furthermore, the model (1) undergoes Hopf bifurcation at \(\tau _1=\tau _1'\).
$$\begin{aligned} \tau _{1,j}=\dfrac{1}{\psi _0}\arccos \{\frac{ \left( \delta _3 \rho _2+\delta _5 \delta _7\right) \cos \tau _2\psi _0-\delta _3 \rho _2+\delta _6 \delta _7+\left( -\delta _3 \rho _1-\delta _7 \rho _2\right) \sin \tau _2\psi _0}{\delta _7^2-\delta _3}\}+\dfrac{2\pi j}{\psi _0}. \end{aligned}$$
(35)
where
$$\begin{aligned} j&=0,1,2,\ldots ,\\ \delta _5&=\gamma _1 \psi _0 ^4-\gamma _2 \psi _0 ^3+\gamma _4 \psi _0,\\ \delta _7&=\psi _0 ^5-\alpha _2 \psi _0 ^3+\alpha _4 \psi _0 ,\\ \delta _7&=\beta _2 \psi _0 ^3+\beta _4 \psi _0. \end{aligned}$$
(36)
Parametric evaluation with hybrid genetic algorithm
A hybrid genetic algorithm combines the power of the genetic algorithm (GA) with the speed of a local optimizer.
The parametric approximation is the most challenging task after designing a mathematical model and after finding the intervals of stability, i.e. the parameters that satisfy the stability criteria. Optimizing parametric values for mathematical models has always remained a great challenge Abdel-Salam et al. (2021).
With the advancement in the field of artificial intelligence and data sciences, the parametric approximation is made easier, keeping in view the stochastic, probabilistic and/or the randomized nature of the real data sets.
In this manuscript, we have used a hybrid optimization tool, partially based on the genetic algorithm, that works for several populations of the parametric mutated genes (sets of values). Matlab platform was utilized for this purpose. Furthermore, the parametric values are selected by keeping in view the intervals imposed by the biological characteristics of the viral process of infection.
A continuous genetic algorithm, that can easily hybridize with the local optimizer, is used during this research. In simple words, the improved values from the genetic algorithm are carried forward by the local optimizer to reduce the computational complexity.
Numerical simulations
We have run some numerical experiments for the understanding of virus control and on the other hand, the bifurcation, linked with the delay.
Figure 3 depicts the role of important parameter b, in understanding the virus spread. For different values of b, we have obtained different dynamics and since the virus replication rate is directly proportional to b, for increased values of b, the virus spread increases and the phase space provides a better understanding of increase in infection, relative to virus load, target cells and the Furin action (see arrow indicating the peak in amplitude). Similarly, Fig. 4 provides information about the change in parameter, linked with the different infection stages (i.e. moving from the compartment of infected cells at first stage to infected cells at second stage). The change in angle of the phase portrait provides useful information about the dynamics.
Figure 5 provides useful information about the impact of delay in transmission from one compartment to another, on the virus replication, infected cells and Furin. We can see that for increased delay, as anticipated analytically, there is bifurcation.
Summary of results
A mathematical model is analyzed with non-negativity of solution, equilibrium points and stability analysis.
-
1.
Theorem 2.1 shows that the values of compartments is always positive as the parameter is positive.
-
2.
The Basic reproductive number is obtained. It is calculated by the model of ordinary differential equations, using analytical approach and Matcont numerical approach.
-
3.
If basic reproductive number \(R_0\le 1\), the infection free equilibrium point is stable and infection is completely vanished.
-
4.
If the basic reproduction number \(R_1 >1\), endemic equilibrium point is stable in feasible interval.
-
5.
Here we use time delay as parameter of bifurcation to examine Hopf bifurcation.
-
6.
The non negative endemic equilibrium point is stable when the time delay is very small as time delay increases, the instability occurs that is in accordance with the hopf bifurcation criteria.
Hopf bifurcation is use to find out the instability region in the neighborhood of endemic equilibrium point.
-
7.
Considering both the D614G mutation and the facilitated action of furin in this process, we assume parameters inclusive of these characteristics.