Skip to main content

Modeling streamflow using multiple precipitation products in a topographically complex catchment

Abstract

Precipitation is of primary importance in hydrological modeling and streamflow prediction. However, lack of gauge stations for long-term precipitation data, particularly in the data-scarce Chitral River Basin (CRB) of Pakistan and other parts in the developing world, is a hindrance to understand surface water hydrology. Therefore, this study aims to assess different sources of precipitation data for streamflow prediction in the CRB. A modified version of the conceptual and semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) known as HBV-light is used in this study to model streamflow by forcing it with precipitation inputs of different Precipitation Products (PPs). These PPs include APHRODITE (V1101, V1801R1), CHIRPS V2.0, CPC-Global, ERA5, GPCC V.2018 (V2), GPCP-1DD V1.2, PERSIANN, CHRS CCS, CHRS CDR and TRMM (3B42V7). The model was calibrated and validated for two periods (1995–2005 and 2007–2013, respectively), and showed good performance during both periods. Prior to assessing the performance of these PPs to simulate observed streamflow, they were assessed against gauged precipitation. Results of this study showed that APHRODITE-based precipitation performed better than other precipitation products in the simulation of precipitation characteristics in the study region. Multiple efficiency evaluation metrics including KGE, NSE, and PBIAS were employed to assess streamflow prediction capability of different products. Results indicated that APHRODITE outperformed all other PPs (KGE 0.89) in terms of simulating observed streamflow in the CRB. The CPC Global precipitation product (KGE 0.71) was found to be the least suitable product for hydrological modeling in the CRB. This study provides useful guidance for the selection and application of gridded precipitation products for long-term continuous streamflow prediction in the CRB.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Data are available from authors upon reasonable request.

References

  1. Adnan M, Nabi G, Poomee MS, Ashraf A (2017) Snowmelt runoff prediction under changing climate in the Himalayan cryosphere: a case of Gilgit River Basin. Geosci Front 8:941–949. https://doi.org/10.1016/j.gsf.2016.08.008

    Article  Google Scholar 

  2. Agutu NO, Awange JL, Zerihun A, Ndehedehe CE, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194:287–302. https://doi.org/10.1016/j.rse.2017.03.041

    Article  Google Scholar 

  3. Agutu NO, Awange JL, Ndehedehe C, Kirimi F, Kuhn M (2019) GRACE-derived groundwater changes over Greater Horn of Africa: temporal variability and the potential for irrigated agriculture. Sci Total Environ 693:133467. https://doi.org/10.1016/j.scitotenv.2019.07.273

    Article  Google Scholar 

  4. Akhmadiyeva Z, Abdullaev I (2019) Water management paradigm shifts in the Caspian Sea region: Review and outlook. J Hydrol 568:997–1006. https://doi.org/10.1016/j.jhydrol.2018.11.009

    Article  Google Scholar 

  5. Ashouri HK, Hsu L, Sorooshian S et al (2015) PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96:69–83. https://doi.org/10.1175/BAMS-D-13-00068.1

    Article  Google Scholar 

  6. Atef SS, Sadeqinazhad F, Farjaad F, Amatya DM (2019) Water conflict management and cooperation between Afghanistan and Pakistan. J Hydrol 570:875–892. https://doi.org/10.1016/j.jhydrol.2018.12.075

    Article  Google Scholar 

  7. Beck HE, Vergopolan N, Pan M et al (2017) Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol Earth Syst Sci 21:6201–6217. https://doi.org/10.5194/hess-21-6201-2017

    Article  Google Scholar 

  8. Belayneh A, Sintayehu G, Gedam K, Muluken T (2020) Evaluation of satellite precipitation products using HEC-HMS model. Model Earth Syst Environ 6:2015–2032. https://doi.org/10.1007/s40808-020-00792-z

    Article  Google Scholar 

  9. Bergström S (1976) Development and application of a conceptual runoff model for Scandinavian catchments. SMHI Norrköping, Report RH07. http://urn.kb.se/resolve?urn=urn:nbn:se:smhi:diva-5738. Accessed 25 Jan 2021

  10. Beven KJ (2011) Rainfall-runoff modelling: the primer. Wiley, New York

    Google Scholar 

  11. Biermann F, Dingwerth K (2004) Global environmental change and the nation state. Glob Environ Politics 4:1–22. https://doi.org/10.1162/152638004773730185

    Article  Google Scholar 

  12. Burhan A, Usman M, Bukhari SAA, Sajjad H (2020) Contribution of glacier, snow and rain components in flow regime projected with HBV under AR5 based climate change scenarios over Chitral River Basin (Hindukush Ranges, Pakistan). Int J Clim Res 4:24–36. https://doi.org/10.18488/journal.112.2020.41.24.36 Accessed from http://www.conscientiabeam.com/journal/112/abstract/5965

  13. Chen M, and Xie P (2008) CPC Unified Gauge-based Analysis of Global Daily Precipiation, in: Western Pacific Geophysics Meeting, 29 July–1 August 2008, Cairns, Australia.

  14. Chen CJ, Senarath SU, Dima-West IM, Marcella MP (2017) Evaluation and restructuring of gridded precipitation data over the Greater Mekong Subregion. Int J Climatol 37:180–196. https://doi.org/10.1002/joc.4696

    Article  Google Scholar 

  15. Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50:96–100. https://doi.org/10.3189/172756409787769744

    Article  Google Scholar 

  16. Copernicus Climate Change Service (C3S) (2017) ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home. Accessed Jul 2020

  17. Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:1–21. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  18. Grech-Madin C, Döring S, Kim K, Swain A (2018) Negotiating water across levels: a peace and conflict “Toolbox” for water diplomacy. J Hydrol 559:100–109. https://doi.org/10.1016/j.jhydrol.2018.02.008

    Article  Google Scholar 

  19. Guo H, Chen, Bao A et al (2015) Inter-comparison of high-resolution satellite precipitation products over central Asia. Remote Sens 7:7181–7211. https://doi.org/10.3390/rs70607181

    Article  Google Scholar 

  20. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  21. Hakala K, Addor N, Seibert J (2018) Hydrological modeling to evaluate climate model simulations and their bias correction. J Hydrometeorol 19:1321–1337. https://doi.org/10.1175/JHM-D-17-0189.1

    Article  Google Scholar 

  22. Hashmi MZUR, Masood A, Mushtaq H, Bukhari SAA, Ahmad B, Tahir AA (2020) Exploring climate change impacts during first half of the 21st century on flow regime of the transboundary Kabul River in the Hindukush region. J Water Clim Change 11:1521–1538. https://doi.org/10.2166/wcc.2019.094

    Article  Google Scholar 

  23. Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

  24. Herold N, Alexander LV, Donat MG, Contractor S, Becker A (2016) How much does it rain over land? Geophys Res Lett 43:341–348. https://doi.org/10.1002/2015GL066615

    Article  Google Scholar 

  25. Hewitt K (2011) Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt Res Dev 31:188–200. https://doi.org/10.1659/MRD-JOURNAL-D-11-00020.1

    Article  Google Scholar 

  26. Hong Y, Hsu KL, Sorooshian S, Gao X (2004) Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J Appl Meteorol 43:1834–1853. https://doi.org/10.1175/JAM2173.1

    Article  Google Scholar 

  27. Honkonen T, Lipponen A (2018) Finland’s cooperation in managing transboundary waters and the UNECE principles for effective joint bodies: value for water diplomacy? J Hydrol 567:320–331. https://doi.org/10.1016/j.jhydrol.2018.09.062

    Article  Google Scholar 

  28. Hu M, Sayama T, Duan W, Takara K, He B, Luo P (2017) Assessment of hydrological extremes in the Kamo River Basin, Japan. Hydrol Sci J 62:1255–1265. https://doi.org/10.1080/02626667.2017.1319063

    Article  Google Scholar 

  29. Hu Z, Zhou Q, Chen X et al (2018) Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. Int J Climatol 38:3475–3493. https://doi.org/10.1002/joc.5510

    Article  Google Scholar 

  30. Huffman GJ, Adler RF, Morrissey MM et al (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50. https://doi.org/10.1175/1525-7541(2001)002%3C0036:GPAODD%3E2.0.CO;2

    Article  Google Scholar 

  31. Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  32. Irmak S, Irmak A, Allen RG, Jones JW (2003) Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J Irrig Drain Eng 129:336–347. https://doi.org/10.1061/%28ASCE%290733-9437%282003%29129%3A5%28336%29

    Article  Google Scholar 

  33. Ji X, Li Y, Luo X et al (2020) Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atm Res 242:104964. https://doi.org/10.1016/j.atmosres.2020.104964

    Article  Google Scholar 

  34. Jolliffe IT (2002) Principal component analysis. Springer series in statistics, 2nd edn. Springer, New York

    Google Scholar 

  35. Kabood SHT, Hosseini SA, Kabood AHT (2020) Investigating the effects of climate change on stream flows of Urmia Lake basin in Iran. Model Earth Syst Environ 6:329–339. https://doi.org/10.1007/s40808-019-00681-0

    Article  Google Scholar 

  36. Lauri H, Räsänen TA, Kummu M (2014) Using reanalysis and remotely sensed temperature and precipitation data for hydrological modeling in monsoon climate: Mekong River case study. J Hydrometeorol 15:1532–1545. https://doi.org/10.1175/JHM-D-13-084.1

    Article  Google Scholar 

  37. Li H, Haugen JE, Xu CY (2018) Precipitation pattern in the Western Himalayas revealed by four datasets. Hydrol Earth Syst Sci 22:5097–5110. https://doi.org/10.5194/hess-22-5097-2018

    Article  Google Scholar 

  38. Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201:272–288. https://doi.org/10.1016/S0022-1694(97)00041-3

    Article  Google Scholar 

  39. Ma Y, Zhang Y, Yang D, Farhan SB (2015) Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int J Climatol 35:1201–1211. https://doi.org/10.1002/joc.4045

    Article  Google Scholar 

  40. Martinez WL, Martinez AR (2005) Exploratory data analysis with MATLAB. Computer science and data analysis series. Chapman and Hall/CRC Press LLC, London

    Google Scholar 

  41. Masih I, Uhlenbrook S, Maskey S, Ahmad MD (2010) Regionalization of a conceptual rainfall–runoff model based on similarity of the flow duration curve: a case study from the semi-arid Karkheh basin. Iran J Hydrol 391:188–201. https://doi.org/10.1016/j.jhydrol.2010.07.018

    Article  Google Scholar 

  42. Ménégoz M, Gallée H, Jacobi HW (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17:3921–3936. https://doi.org/10.5194/hess-17-3921-2013

    Article  Google Scholar 

  43. Ndehedehe CE (2019) The water resources of tropical West Africa: problems, progress and prospect. Acta Geophys 67:621–649. https://doi.org/10.1007/s11600-019-00260-y

    Article  Google Scholar 

  44. Ndehedehe CE, Agutu NO, Okwuashi O (2018) Is terrestrial water storage a useful indicator in assessing the impacts of climate variability on crop yield in semi-arid ecosystems? Ecol Indic 88:51–62. https://doi.org/10.1016/j.ecolind.2018.01.026

    Article  Google Scholar 

  45. Ndehedehe CE, Anyah RO, Alsdorf D, Agutu NO, Ferreira VG (2019a) Modelling the impacts of global multi-scale climatic drivers on hydro-climatic extremes (1901–2014) over the Congo basin. Sci Total Environ 651:1569–1587. https://doi.org/10.1016/j.scitotenv.2018.09.203

    Article  Google Scholar 

  46. Ndehedehe CE, Ferreira VG, Agutu NO (2019b) Hydrological controls on surface vegetation dynamics over West and Central Africa. Ecol Indic 103:494–508. https://doi.org/10.1016/j.ecolind.2019.04.032

    Article  Google Scholar 

  47. Ndehedehe CE, Ferreira VG, Onojeghuo AO, Agutu NO, Emengini E, Getirana A (2020a) Influence of global climate on freshwater changes in Africa’s largest endorheic basin using multi-scaled indicators. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139643

    Article  Google Scholar 

  48. Ndehedehe CE, Stewart-Koster B, Burford MA, Bunn SE (2020b) Predicting hot spots of aquatic plant biomass in a large floodplain river catchment in the Australian wet-dry tropics. Ecol Indic 117:106616. https://doi.org/10.1016/j.ecolind.2020.106616

    Article  Google Scholar 

  49. Pakoksung K, Takagi M (2016) Effect of satellite based rainfall products on river basin responses of runoff simulation on flood event. Model Earth Syst Environ 2:1–14. https://doi.org/10.1007/s40808-016-0200-0

    Article  Google Scholar 

  50. Prein AF, Gobiet A (2017) Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int J Climatol 37:305–327. https://doi.org/10.1002/joc.4706

    Article  Google Scholar 

  51. Price K, Purucker ST, Kraemer SR, Babendreier JE, Knightes CD (2014) Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrol Process 28:3505–3520. https://doi.org/10.1002/hyp.9890

    Article  Google Scholar 

  52. Schamm K, Ziese M, Becker A, Finger P, Meyer-Christoffer A, Schneider U et al (2014) Global gridded precipitation over land: a description of the new GPCC First Guess Daily product. Earth Syst Sci Data 6:49–60. https://doi.org/10.5194/essd-6-49-2014

    Article  Google Scholar 

  53. Schmeier S, Shubber Z (2018) Anchoring water diplomacy—the legal nature of international river basin organizations. J Hydrol 567:114–120. https://doi.org/10.1016/j.jhydrol.2018.09.054

    Article  Google Scholar 

  54. Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L (2016) Vulnerability to climate change of cocoa in West Africa: patterns, opportunities and limits to adaptation. Sci Total Environ 556:231–241. https://doi.org/10.1016/j.scitotenv.2016.03.024

    Article  Google Scholar 

  55. Seibert J (2000) Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrol Earth Syst Sci 4:215–224. https://doi.org/10.5194/hess-4-215-2000

    Article  Google Scholar 

  56. Seibert J, Vis MJ (2012) Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol Earth Syst Sci 16:3315–3325. https://doi.org/10.5194/hess-16-3315-2012

    Article  Google Scholar 

  57. Skaskevych A, Lee J, Jung HC, Bolten J, David JL, Policelli FS et al (2020) Application of GRACE to the estimation of groundwater storage change in a data-poor region: a case study of Ngadda catchment in the Lake Chad Basin. Hydrol Process 34:941–955. https://doi.org/10.1002/hyp.13613

    Article  Google Scholar 

  58. Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81:2035–2046. https://doi.org/10.1175/1520-0477(2000)081%3C2035:EOPSSE%3E2.3.CO;2

    Article  Google Scholar 

  59. Stephens GL, L’Ecuyer T, Forbes R, Gettelmen A, Golaz JC, Bodas-Salcedo A et al (2010) Dreary state of precipitation in global models. J Geophys Res-Atmos. https://doi.org/10.1029/2010JD014532

    Article  Google Scholar 

  60. Tan ML, Ibrahim AL, Duan Z et al (2015) Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens 7:1504–1528. https://doi.org/10.3390/rs70201504

    Article  Google Scholar 

  61. Tockner K, Lorang MS, Stanford JA (2010) River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Res Appl 26:76–86. https://doi.org/10.1002/rra.1328

    Article  Google Scholar 

  62. Usman M, Pan X, Penna D, Ahmad B (2020) Hydrologic alteration and potential ecosystem implications under a changing climate in the Chitral River, Hindukush region, Pakistan. J Water Clim Change. https://doi.org/10.2166/wcc.2020.073 (in press)

    Article  Google Scholar 

  63. Vis M, Knight R, Pool S, Wolfe W, Seibert J (2015) Model calibration criteria for estimating ecological flow characteristics. Water 7:2358–2381. https://doi.org/10.3390/w7052358

    Article  Google Scholar 

  64. Vörösmarty C, Askew A, Grabs W, Barry RG, Birkett C, Kitaev L (2001) Global water data: a newly endangered species. Eos Trans AGU 82:54–58. https://doi.org/10.1029/01EO00031

    Article  Google Scholar 

  65. Vu MT, Raghavan SV, Liong SY (2012) SWAT use of gridded observations for simulating runoff—a Vietnam river basin study. Hydrol Earth Syst Sci Discuss 16:2801–2811. https://doi.org/10.5194/hess-16-2801-2012

    Article  Google Scholar 

  66. Wilks D (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic press, New York

    Google Scholar 

  67. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1

    Article  Google Scholar 

  68. Zandler H, Haag I, Samimi C (2019) Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Sci Rep 9:15118. https://doi.org/10.1038/s41598-019-51666-z

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Pakistan Meteorological Department and Surface Water Hydrology Group of Water and Power Development Authority of Pakistan for providing hydro-meteorological data for this study.

Funding

We received no financial support for the research, authorship, and/or publication of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Ndehedehe, C.E., Ahmad, B. et al. Modeling streamflow using multiple precipitation products in a topographically complex catchment. Model. Earth Syst. Environ. (2021). https://doi.org/10.1007/s40808-021-01198-1

Download citation

Keywords

  • Streamflow prediction
  • Chitral river basin
  • PCA
  • HBV-light
  • Gridded precipitation
  • Reanalysis
  • APHRODITE