Skip to main content

Advertisement

Log in

Variability of the ocean mixed layer depth and the upwelling activity in the Cape Bojador, Morocco

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

This study examines the seasonality of the patterns of the ocean mixed layer depth (MLD) with the coastal upwelling system, using a model data from marine Copernicus with a resolution of 0.083° × 0.083°. For that, we examined wind forcing, ocean circulation, sea surface temperature, sea surface salinity, sea surface chlorophyll-a, and mixed layer depth seasonality from 2007 to 2017 in the Cape Bojador south of the Moroccan Atlantic coast. We observed that in the fall season the wind speed was low, and the maximum wind speed is in the summer season. Furthermore, we found that coastal areas are related to a generally shallower MLD all the year in the Cape. We also proved that the source of the upwelling is between 25 and 26°N. However, we observed that the sea surface chlorophyll concentration in the same region is minimum, while in the region between 24.5 and 22°N, the CHL-a is maximum. We suggested that the biological richness in Cape Bojador, due to the activity of upwelling, derives to the south because of the northward ocean filament. Despite the different physical and biological parameters used to detect upwelling activity, we found that upwelling detection based on sea surface temperature is the best method to describe the upwelling activity in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293–2315

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, p 25

  • Arakawa A, Lamb VR (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. Mon Weather Rev 109:18–36

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global circulation model at eddy permitting resolution. Ocean Dyn 56:543–567

    Article  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32:355–371. https://doi.org/10.1080/01490410903297766

    Article  Google Scholar 

  • Behrenfeld MJ, Boss ES (2014) Resurrecting the ecological underpinnings of ocean plankton blooms. Annu Rev Mar Sci 6:167–194

    Article  Google Scholar 

  • Benazzouz A et al (2014) On the temporal memory of costal upwelling off NW Africa. J Geophys Res Ocean 119:6356–6380

    Article  Google Scholar 

  • Bessa Ismail A, Makaoui K Hilmi, Afifi M (2017) Wavelet analysis on upwelling index along the Moroccan Atlantic coast. Eur Sci J 13(12):276

    Google Scholar 

  • Bessa I, Makaoui A, Hilmi K, Afifi M (2018) Variability of the mixed layer depth and the ocean surface properties in the Cape Ghir region, Morocco for the period 2002–2014. Model Earth Syst Environ. https://doi.org/10.1007/s40808-018-0411-7

    Article  Google Scholar 

  • Boyer Montégut C et al (2004) Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J Geophys. https://doi.org/10.1029/2004jc002378

    Article  Google Scholar 

  • Brown E et al (1989) Ocean circulation. In: Bearman G (ed). Open University (2nd edn 2001, Reprinted 2004; eBook ISBN: 9780080537948, Paperback ISBN: 9780750652780)

  • Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate. Ocean Model 17:28–48

    Article  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the west antarctic peninsula. Philos Trans R Soc Lond B Biol Sci 362(1477):67–94

    Article  Google Scholar 

  • Elghrib H et al (2012) Phytoplankton distribution in the upwelling areas of the Moroccan Atlantic coast localized between 32°30°N and 24°N. CR Biol. https://doi.org/10.1016/j.crvi.2012.07.002

    Article  Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646

    Article  Google Scholar 

  • Holte J, Talley L (2009) A new algorithm for finding mixed layer depths with applications to argo data and subantarctic mode water formation. J Atmos Ocean Technol 26(9):1920–1939

    Article  Google Scholar 

  • Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    Article  Google Scholar 

  • Lévy M, Jahn O, Dutkiewicz S, Follows MJ, d’Ovidio F (2015) The dynamical landscape of marine phytoplankton diversity. J R Soc Interface 12(111):20150481

    Article  Google Scholar 

  • Madec G, The NEMO team (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27. ISSN 1288-1619

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12:381–388

    Article  Google Scholar 

  • Makaoui A et al (2005) L’upwelling de la côte atlantique du Maroc entre 1994 et 1998. Comptes Rendus Geoscience 337(16):1518–1524

    Article  Google Scholar 

  • Mitchell BG, Holm-Hansen O (1991) Observations of modeling of the Antartic phytoplankton crop in relation to mixing depth. Deep Sea Res Part A Oceanogr Res Pap 38(8):981–1007

    Article  Google Scholar 

  • Pastor MV, Peña‐Izquierdo J, Pelegrí JL, Marrero‐Díaz A (2012) Meridional changes in water properties off NW during November 2007/2008. Cienc Mar 38:223–244

    Article  Google Scholar 

  • Pellichero V, Sallée J-B, Schmidtko S, Roquet F, Charrassin J-B (2016) The ocean mixed-layer under Southern Oceansea-ice: seasonal cycle and forcing. J Geophys Res Oceans. https://doi.org/10.1002/2016JC011970

    Article  Google Scholar 

  • Reynolds R, Smith T, Liu C, Chelton D, Casey K, Schlax M (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Rosell-Fieschi M, Pelegri JL, Gourrion J (2015) Zonal jets in the equatorial Atlantic Ocean. Prog Oceanogr 130:1–18

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105:23927–23942

    Article  Google Scholar 

  • Smith W, Jones RM (2015) Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES J Mar Sci J du Conseil 72(6):1952–1960. https://doi.org/10.1093/icesjms/fsu234

    Article  Google Scholar 

  • Stranne C et al (2018) Acoustic mapping of mixed layer depth. Ocean Sci Discuss. https://doi.org/10.5194/os-2017-103

    Article  Google Scholar 

  • Sverdrup HU (1953) On vernal blooming of phytoplankton. J Conseil Exp Mer 18:287–295

    Article  Google Scholar 

  • Whitworth T, Orsi A, Kim SJ, Nowlin W, Locarnini R (1998) Water masses and mixing near the antarctic slope front. Ocean Ice Atmos Interact Antarctic Cont Mar 75:1–27

    Google Scholar 

Download references

Acknowledgements

With regard to the sources of data presented in this article, the authors express their gratitude to Copernicus-Marine Environment Monitoring Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Bessa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 11, 12, 13 and 14.

Fig. 11
figure 11

Average monthly ocean mixed layer depth (m) from 2007 to 2017

Fig. 12
figure 12

Average monthly sea surface temperature (°C) from 2007 to 2017

Fig. 13
figure 13

Average monthly sea surface velocity (m/s) from 2007 to 2017

Fig. 14
figure 14

Average monthly sea surface salinity (PSU) from 2007 to 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, I., Makaoui, A., Agouzouk, A. et al. Variability of the ocean mixed layer depth and the upwelling activity in the Cape Bojador, Morocco. Model. Earth Syst. Environ. 6, 1345–1355 (2020). https://doi.org/10.1007/s40808-020-00774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-020-00774-1

Keywords

Navigation