Skip to main content

Advertisement

Log in

Mapping and monitoring of mangrove along the Odisha coast based on remote sensing and GIS techniques

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Digital image processing techniques using multi-temporal satellite imagery are widely used to understand landscape dynamics. In this study, we analysed the spatio-temporal changes of mangrove along the Odisha coast, India using Landsat satellite images of four different time periods, i.e., Landsat-5 Thematic Mapper satellite images of 1990 and 2009, Landsat-7 Enhanced Thematic Mapper Plus satellite images of 2000 and Landsat-8 Operational Land Imager satellite images of 2015. Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI) and Normalized Difference Wetland Index (NDWI) are used to extract and classify the mangroves into three classes such as dense mangrove, sparse mangrove and open mangrove. The study reveals that total mangrove of the study area increased from 18573.49 ha (1990) to 23871.49 ha (2015) during the last three decades. This may be attributed to mangrove plantation, restoration and proper coastal zone management plan. The paper highlights the importance of digital change detection techniques using NDVI, SAVI and NDWI for mangrove mapping and monitoring along the Odisha coast. This study aids Odisha coastal zone management authority to take timely decisions for conservation of mangrove and future mangrove plantation plans with help of satellite image processing in GIS environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76(1):1–13p

    Article  Google Scholar 

  • Alsaaideh B, Al-Hanbali A, Tateishi R, Kobayashi T, Hoan NT (2013) Mangrove forests mapping in the southern part of Japan using Landsat ETM+ with DEM. J Geogr Inf Syst 5(4):369

    Google Scholar 

  • Andriamparany R, Francois F (2010) Dynamics of mangrove forests in the Mangoky River Delta, Madagascar, under the influence of natural and human factors. For Ecol Manag 259:1161–1169

    Article  Google Scholar 

  • Bedawi N, Kamel M (2010) Segmentation of very high resolution remote sensing imagery of urban areas using particle swarm optimization algorithm. In: Image analysis and recognition: lecture notes in computer science. Springer, New York

    Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903

    Article  Google Scholar 

  • Dahdouh-Guebas F, Verheyden A, De Genst W, Hettiarachchi S, Koedam N (2000) Four decade vegetation dynamics in Sri Lankan mangroves as detected from sequential aerial photography: a case study in Galle. Bull Mar Sci 67:741–759

    Google Scholar 

  • Danielsen F et al (2005) The Asian tsunami: a protective role for coastal vegetation. Science 310:643

    Article  Google Scholar 

  • Das S, Vincent JR (2009) Mangroves protected villages and reduced death toll during Indian super cyclone. Proc Natl Acad Sci 106(18):7357–7360

    Article  Google Scholar 

  • Everitt JH, Yang C, Judd FW, Summy KR (2010) Use of archive aerial photography for monitoring black mangrove populations. J Coast Res 26:649–653

    Article  Google Scholar 

  • Ferreira MA, Andrade F, Banderiba SO, Cardoso P, Nogueira Mendes R, Paula J (2009) Analysis of cover change (1995–2005) of Tanzania/Mozambique transboundary mangroves using Landsat imagery. Aquat Conserv 19:38–45

    Article  Google Scholar 

  • Gao BC (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Article  Google Scholar 

  • Ghorai D, Mahapatra M, Paul AK (2016) Application of remote sensing and GIS techniques for decadal change detection of mangroves along Tamil Nadu Coast, India. J Remote Sens GIS 7(1):42–53

    Google Scholar 

  • Gilman E, Ellison J, Duke NC, And Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89:237–250

    Article  Google Scholar 

  • Giri C, Pengra B, Zhu Z, Singh A, Tieszen L (2007) Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar Coast Shelf Sci 73:91–100

    Article  Google Scholar 

  • Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J Biogeogr 35:519–528

    Article  Google Scholar 

  • Green EP, Clear CD, Mumby PJ, Edwards AJ, Ellis AC (1998) Remote sensing techniques for mangrove mapping. Int J Remote Sens 19:935–956

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Jensen JR, Lin H, Yang X, Ramset E, Davis BA, Thoemke CW (1991) The measurement of mangrove characteristics in south-west Florida using SPOT multispectral data. Geocartogr Int 2:13–21

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89(2):201–219

    Article  Google Scholar 

  • Kuenzer C, Bluemel A, Gebhardt S, Vo Quoc T, Dech S (2011) Remote sensing of mangrove ecosystems: a review. Remote Sens 3(5):878–928

    Article  Google Scholar 

  • Liu GR, Liang CK, Kuo TH, Lin TH, Huang SJ (2004) Comparison of the NDVI, ARVI and AFRI vegetation index along with their relations with the AOD using SPOT 4 vegetation data. TAO 15(1):15–31

    Google Scholar 

  • Mas JF (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20(1):139–152

    Article  Google Scholar 

  • Mas JF (2004) Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuar Coast Shelf Sci 59:219–230

    Article  Google Scholar 

  • Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89(2):155–185

    Article  Google Scholar 

  • NASA (ed) (2011) Landsat 7 Science data users handbook landsat project science office at NASA’s Goddard Space Flight Center in Greenbelt, 186. http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf. Accessed 10 April 2016

  • National Wetland Atlas, SAC/EPSA/ABHG/NWIA/ATLAS/34/2011 (2011) Space Applications Centre (ISRO), Ahmedabad, India. http://moef.nic.in/downloads/public-information/NWIA_Assam_Atlas.pdf. Accessed 6 Jan 2013

  • Nayak S (2002) Application of remote sensing to coastal zone managmrnt in India. Int Arch Photogramm Remote Spat Inf Syst 34:371–377 Part 7.

    Google Scholar 

  • SAC (2012) Coastal Zones of India. Space Applications Centre (ISRO), pp 601. ISBN: 978-81-909978-9-8

  • Selvam V, Ravichandran KK, Gnanappazham L, Navamuniyammal M (2003) Assessment of community based restoration of Pichavaram mangrove wetland using remote sensing data. Curr Sci 85:794–798

    Google Scholar 

  • Seto KC, Fragkias M (2007) Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob Environ Change 17:486–500

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89(2):220–236

    Article  Google Scholar 

  • Wang L, Zhang S (2014) Incorporation of texture information in a SVM method for classifying salt cedar in western China. Remote Sens Lett 5(6):501–510

    Article  Google Scholar 

  • Wang L, Sousa W, Gong P (2004) Integration of object-based and pixel-based classification for mangrove mapping with IKONOS imagery. Int J Remote Sens 25:5655–5668

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to Dr. Ashis Kumar Paul Professor, Vidyasagar University for providing valuable guidance, support and constant encouragement. The authors are also thankful to Dr. Ramkrrishna Maiti, Professor, Vidyasagar University and Dr. Jatisankar Bandyopadhyay, Assistant Professor, Vidyasagar University for providing valuable guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Mahapatra, M. & Chakraborty, A. Mapping and monitoring of mangrove along the Odisha coast based on remote sensing and GIS techniques. Model. Earth Syst. Environ. 5, 217–226 (2019). https://doi.org/10.1007/s40808-018-0529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-018-0529-7

Keywords

Navigation