Advertisement

Modeling Earth Systems and Environment

, Volume 4, Issue 3, pp 1225–1238 | Cite as

Modelling the current and future distribution of Kigelia africana under climate change in Benin, West Africa

  • Meminvegni Landry Gildas Guidigan
  • Fortuné Azihou
  • Rodrigue Idohou
  • Appollonia Amiosino Okhimamhe
  • Adandé Belarmain Fandohan
  • Brice Sinsin
  • Lucette Adet
Original Article

Abstract

Kigelia africana (Bignoniaceae), is an indigenous species widely recognised for its medicinal, magic uses and therapeutic virtue used throughout Africa and especially in Benin Republic. Distribution of the species coincides with that of the intermediate hosts as determined by environmental factors. This study aimed to model the present-day and future distribution of Kigelia africana in Benin. Maximum Entropy (MaxEnt) modelling technique was used to predict the distribution of suitable habitats of Kigelia africana using presence data combined with two future forescats: CNRM-CM5and HadGEM2-ES. Results showed that Annual Temperature range, precipitation seasonality, soil, temperature seasonality, maximum temperature of the warmest month were most significant variables. Which mean that the excellent of the model. Likewise, must of the distribution of the species will be find mostly stable. The different model used identified different areas as highest conservation priority although the highest priority areas keeping most of Kigelia africana species are located in the Guineo-Congolian and Sudano-Guinean region. Additional analyses could help to have more information about the distribution and population and cultivation of Kigelia africana species, which in future will help us to improve operative conservation strategies for this medicinal species. MaxEnt model is robust in Kigelia africana species habitat modelling.

Keywords

Kigelia africana Biodiversity Climate change Representative concentration pathways Ecological niche GIS 

Notes

Acknowledgements

This study was supported by the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) and the German Ministry of Education and Research (BMBF). Thanks to the management of the Federal University of Technology (FUT) Minna for offering enabling learning environment necessary for the success of this research.

References

  1. Adomou CA, Agbani OP, Sinsin B (2011) Nature conservation in West Africa: red list for Benin. International Institute of Tropical Agriculture (IITA). Ibadan, NigeriaGoogle Scholar
  2. Araújo MB (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688CrossRefGoogle Scholar
  3. Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8CrossRefGoogle Scholar
  4. Atawodi SE, Olowoniyi OD (2015a) Pharmacological and therapeutic Activities of Kigelia africana (Lam.) Benth. Ann Res Rev Biol 5(1):1–17.  https://doi.org/10.9734/ARRB/2015/8632 CrossRefGoogle Scholar
  5. Atawodi S, Olowoniyi O (2015b) Pharmacological and therapeutic activities of Kigelia africana (Lam.) Benth. Ann Res Rev Biol 5(1):1–17.  https://doi.org/10.9734/ARRB/2015/8632 CrossRefGoogle Scholar
  6. Azu OO (2013) The sausage plant (Kigelia africana): have we finally discovered a male sperm booster? J Med Plant Res 7(15):903–910.  https://doi.org/10.5897/JMPR12.0746 Google Scholar
  7. Badeau V, Dupouey JL, Cluzeau C, Drapier J (2005) Aires potentielles de répartition des essences forestières d’ici 2100. Forêt Entreprise 162(162):25–29Google Scholar
  8. Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11(4):854–866.  https://doi.org/10.3390/e11040854 CrossRefGoogle Scholar
  9. Barve N (2008) Tool for Partial-ROC ver 1.0, Biodiversity Institute, Lawrence, KS, USAGoogle Scholar
  10. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222(11):1810–1819.  https://doi.org/10.1016/j.ecolmodel.2011.02.011 CrossRefGoogle Scholar
  11. Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species’ distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling 186:250–269CrossRefGoogle Scholar
  12. Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13(7):1368–1385.  https://doi.org/10.1111/j.1365-2486.2007.01357.x CrossRefGoogle Scholar
  13. Bello I, Shehu MW, Musa M, Asmawi Z, M., & Mahmud R (2016) Kigelia africana (Lam.) Benth. (Sausage tree): Phytochemistry and pharmacological review of a quintessential African traditional medicinal plant. J Ethnopharmacol 189(May):253–276.  https://doi.org/10.1016/j.jep.2016.05.049 CrossRefGoogle Scholar
  14. Berry PM, Jones AP, Nicholls RJ, VOS, C. C. (2007). Assessment of the vulnerability of terrestrial and coastal habitats and species in Europe to climate change, Annex 2 of Planning for biodiversity in a changing climate - BRANCH: project Final Report. Natural England, UK Google Scholar
  15. Blach-overgaard A, Svenning J, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa : the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33(3):380–391.  https://doi.org/10.1111/j.1600-0587.2010.06273.x Google Scholar
  16. Bourou S, Bowe C, Diouf M, Van Damme P (2012) Ecological and human impacts on stand density and distribution of tamarind (Tamarindus indica L.) in Senegal. Afr J Ecol 50(3):253–265.  https://doi.org/10.1111/j.1365-2028.2012.01319.x Google Scholar
  17. Busby JW, Smith TG, White KL, Strange SM (2012). Locating climate insecurity: where are the most vulnerable places in Africa ? Clim Change.  https://doi.org/10.1007/978-3-642-28626-1 Google Scholar
  18. De Roeck E, Van Coillie F, De Wulf R, Soenen K, Charlier J, Vercruysse J et al (2014) Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study. Geospat Health 8(3):671–683CrossRefGoogle Scholar
  19. Dotchamou FT, Atindogbe G, Sode AI, Fonton HN (2016) Density and spatial distribution of Parkia biglobosa pattern in Benin under climate change. J Agric Environ Int Dev (JAEID) 110(1):173–194.  https://doi.org/10.12895/JAEID.20161.447 Google Scholar
  20. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677–697.  https://doi.org/10.1146/annurev.ecolsys.110308.120159 CrossRefGoogle Scholar
  21. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342.  https://doi.org/10.1111/j.2041-210X.2010.00036.x CrossRefGoogle Scholar
  22. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57CrossRefGoogle Scholar
  23. Estallo EL, Lamfri MA, Scavuzzo CM, Almeida FFL, Introini MV, Zaidenberg M et al (2008) Models for predicting Aedes aegypti larval indices based on satellite images and climatic variables. J Am Mosquito Contr 24(3):368–376CrossRefGoogle Scholar
  24. Eyong KO, Foyet HS, Eyong CA, Sidjui LS, Yimdjo MC, Nwembe SN, … Nastasa V (2013) Neurological activities of lapachol and its furano derivatives from Kigelia africana. Med Chem Res 22(6):2902–2911.  https://doi.org/10.1007/s00044-012-0284-7 CrossRefGoogle Scholar
  25. Fandohan, B., Gouwakinnou, G. N., Fonton, N. H., Sinsin, B., & Liu, J. (2013). Impacts des changements climatiques sur la répartition géographique des aires favorablesà la culture et à la conservation des fruitiers sous-utilisés: cas du tamarinier au Bénin. Biotechnologie, Agronomie, Société et Environnement, 17(3), 450–462. Retrieved from http://popups.ulg.ac.be/Base/document.php?id=10186&format=print
  26. Fandohan AB, Oduor AMO, Sodé AI, Wu L, Cuni-Sanchez A, Assédé E, Gouwakinnou GN (2015) Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current andfuture climates. Ecosyst Health Sustain 1(6):1–12.  https://doi.org/10.1890/EHS15-0003.1 CrossRefGoogle Scholar
  27. Gbesso FHG, Tenté BHA, Gouwakinnou NG, Sinsin BA (2013) Influence des changements climatiquessur la distribution géographique de Chrysophyllum albidum G. Don (Sapotaceae) au Benin. IntJ Biol Chem Sci 7(5): 2007–2018CrossRefGoogle Scholar
  28. Gouwakinnou GN, Lykke A, Assogbadjo AE, Sinsin B (2011) Local knowledge, pattern anddiversity of use of Sclerocarya birrea. J Ethnobiol Ethnomed 7(1):8.  https://doi.org/10.1186/1746-4269-7-8 CrossRefGoogle Scholar
  29. Guibert H, Alle UC, Dimon RO, Vissoh PV, Vodouhe SD, Tossou RC, Agbossou EK (2010). Correspondances entre savoirs locaux et scientifiques: perceptions des changements climatiques et adaptations, étude en région cotonnière du Bird du Benin. Isda, p 10Google Scholar
  30. Guisan A, Thuiller W (2009) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009.  https://doi.org/10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  31. Guisan A, Zimmerman N, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186.  https://doi.org/10.1016/S0304-3800(00)00354-9 CrossRefGoogle Scholar
  32. Heubes J, Heubach K, Schmidt M, Wittig R, Zizka G, Nuppenau E-Aa, Hahn K (2012). Impact of future climate and land use change on non-timber forest product provision in Benin, West Africa: linking niche-based modeling with ecosystem service values. Econ Bot, 66(4), 383–397.  https://doi.org/10.1007/s12231-012-9216-1 CrossRefGoogle Scholar
  33. Hijmans RJ, Susan Cameron JP (2005). Bioclim|WorldClim—Global Climate Data. http://www.worldclim.org
  34. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  35. Idohou R, Assogbadjo AE, Kakaï RG, Peterson AT (2017a) Spatio-temporal dynamic of suitable areas for species conservation in West Africa: eight economically important wild palms under present and future climates. Agrofor Syst 91(3):527–540.  https://doi.org/10.1007/s10457-016-9955-6 CrossRefGoogle Scholar
  36. Idohou R, Peterson T, Assogbadjo A, Vihotogbe AE, Padonou RL, E., & Glèlè Kakaï R (2017b) Identification of potential areas for wild palm cultivation in the Republic of Benin through remote sensing and ecological niche modeling. Genet Resour Crop Evol 64(6):1383–1393.  https://doi.org/10.1007/s10722-016-0443-7 CrossRefGoogle Scholar
  37. Ijmans ROJH., Tu M (2001) Geography distribution of wild potato species. Am J Bot 88(11):2101–2112CrossRefGoogle Scholar
  38. IPCC (2007). Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel. Genebra, Suíça.  https://doi.org/10.1256/004316502320517344
  39. Jennings AP, Mathai J, Brodie J, Giordano AJ, Veron G (2013) Predicted distributions and conservation status of two threatened Southeast Asian small carnivores: the banded civet and Hose’s civet. Mammalia 77(3):261–271.  https://doi.org/10.1515/mammalia-2012-0110 CrossRefGoogle Scholar
  40. Jubb AI, Canadell P, Dix M (2013). Representative Concentration Pathways (RCPs). Australian Climate Change Science Program, pp 5–7Google Scholar
  41. Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Sci 1(4):1(4), 094–098.  https://doi.org/10.3390/d1020118 Google Scholar
  42. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40(4):778–789.  https://doi.org/10.1111/jbi.12058 CrossRefGoogle Scholar
  43. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151CrossRefGoogle Scholar
  44. Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600CrossRefGoogle Scholar
  45. Lugina KM, Groisman PYa, Vinnikov KYa, Koknaeva VV, Speranskaya NA (2006) Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2005. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge.  https://doi.org/10.3334/CDIAC/cli.003 Google Scholar
  46. Martínez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob Ecol Biogeogr 13(4):305–314.  https://doi.org/10.1111/j.1466-822X.2004.00107.x CrossRefGoogle Scholar
  47. Mahapatra AK, Albers HJ, Robinson EJZ (2005) The impact of NTFP sales on rural households' cash income in India's dry deciduous forest. Environ Manage 35(3):258–65CrossRefGoogle Scholar
  48. Olatunji G, Olubunmi A (2009) Comprehensive scientific demystification of Kigelia africana: a review. Pure Appl Chem 3(9):158–164Google Scholar
  49. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Vitex doniana Sweet. Agroforestree Database:a Tree Reference Selection Guide 0(4.0):1–5Google Scholar
  50. Ortega-Huerta MA, Peterson AT (2004) Modelling spatial patterns of biodiversity for conservation prioritization in north-eastern Mexico. Divers. Distrib 10:39–54CrossRefGoogle Scholar
  51. Owolabi OJ, Omogbai EKI, Obasuyi O (2007) Antifungal and antibacterial activities of the ethanolic and aqueous extract of Kigelia africana (Bignoniaceae) stem bark. Afr J Biotech 6(14):1677–1680.  https://doi.org/10.4314/ajb.v6i14.57749 Google Scholar
  52. Panitz H, Schubert-frisius M, Meier-fleischer K, Lenzen P, Keuler K, Luethi D, … Dosio A (2013). CORDEX climate simulations for Africa using COSMO-CLM (CCLM). Geophys Res Abstracts, 15(Cclm), 2013Google Scholar
  53. Papeş M, Gaubert P (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers Distrib 13(6):890–902.  https://doi.org/10.1111/j.1472-4642.2007.00392.x CrossRefGoogle Scholar
  54. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102e117Google Scholar
  55. Peterson AT (2003) Predicting the Geography of species’ invasions via ecological niche modeling. Q Rev Biol 78(4):419–433.  https://doi.org/10.1086/378926 CrossRefGoogle Scholar
  56. Peterson AT (2006). Ecologic niche modeling and spatial patterns of disease transmission. Emerg Infect Dis.  https://doi.org/10.3201/eid1212.060373 Google Scholar
  57. Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza a Conservacao 10(2):102–107.  https://doi.org/10.4322/natcon.2012.019 CrossRefGoogle Scholar
  58. Phillips SJ, Anderson RP (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  59. Phillips SJ, Dudík M (2008a). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography; 31(2):pp 161–175CrossRefGoogle Scholar
  60. Phillips SJ, Dudík M (2008b) Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31(2):161–175.  https://doi.org/10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
  61. Phillips SJ, Dudik M, Schapire RE (2004). Maxent software for species distribution modeling. In: Proceedings of the twenty-first international conference on machine learning, 655–662.  https://doi.org/10.1016/j.ecolmodel.2005.03.026
  62. Phillips SB, Aneja VP, Kang D, Arya SP (2006) Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int J Global Environ Issues 6(2–3):231–252.  https://doi.org/10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  63. Piedallu C, Perez V, Gégout J-C, Lebourgeois F, Bertrand R (2009) Impact potentiel du changement climatique sur la distribution de l’Epicéa, du Sapin, du Hêtre et du Chêne sessile en France. Revue Forestière Française LXI(6):567–593.  https://doi.org/10.4267/2042/32924 Google Scholar
  64. Scoones I (1995) Exploiting heterogeneity: habitat use by cattle in dryland Zimbabwe. J Arid Environ 29:221–237CrossRefGoogle Scholar
  65. Simoonga C, Kazembe LN, Kristensen TK, Olsen A, Appleton CC, Mubita P et al. (2009). Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa. Parasitology; 136(13):pp 1683–1693Google Scholar
  66. Stigall AL (2012) Using ecological niche modelling to evaluate niche stability in deep time. J Biogeogr 39(4):772–781.  https://doi.org/10.1111/j.1365-2699.2011.02651.x CrossRefGoogle Scholar
  67. Stockman AK, Beamer DA, Bond JE (2006) An evaluation of a GARP model as an approach to predicting the spatial distribution of non-vagile invertebrate species. Divers Distrib 12(1):81–89.  https://doi.org/10.1111/j.1366-9516.2006.00225.x CrossRefGoogle Scholar
  68. Thorn JS, Nijman V, Smith D, Nekaris KAI (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers Distrib 15(2):289–298.  https://doi.org/10.1111/j.1472-4642.2008.00535.x CrossRefGoogle Scholar
  69. Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007). A comparative evaluation of presence- only methods for modelling species distribution. Divers Distrib.  https://doi.org/10.1111/j.1472-4642.2007.00346.x Google Scholar
  70. van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the ol. Clim Change 122(3):415–429.  https://doi.org/10.1007/s10584-013-0974-2 CrossRefGoogle Scholar
  71. van Zonneveld M, Koskela J, Vinceti B, Jarvis A (2009) Impact of climate change on the distribution of tropical pines in Southeast Asia. Unasylva 60(January 2009):24–29Google Scholar
  72. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, … Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1):5–31.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  73. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21(2):335–342.  https://doi.org/10.1890/10-1171.1 CrossRefGoogle Scholar
  74. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62(11):2868–2883.  https://doi.org/10.1111/j.1558-5646.2008.00482.x CrossRefGoogle Scholar
  75. Warren DL, Glor RE, Turelli M (2010a). Ecography\rENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611CrossRefGoogle Scholar
  76. Warren DL, Glor RE, Turelli M (2010b) ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33(3):607–611.  https://doi.org/10.1111/j.1600-0587.2009.06142.x Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Meminvegni Landry Gildas Guidigan
    • 1
    • 2
    • 4
  • Fortuné Azihou
    • 2
  • Rodrigue Idohou
    • 3
  • Appollonia Amiosino Okhimamhe
    • 1
  • Adandé Belarmain Fandohan
    • 4
  • Brice Sinsin
    • 2
  • Lucette Adet
    • 1
  1. 1.West African Science Service Center on Climate Change and Adapted Land Use (WASCAL CC&ALU)Federal University of Technology, Minna, PMB 65MinnaNigeria
  2. 2.Laboratory of Applied Ecology, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  3. 3.Laboratory of Biomathematics and Forest Estimations, Faculty of Agronomic ScienceUniversity of Abomey-CalaviCotonouBenin
  4. 4.Université nationale d’agriculture École de foresterie et ingénierie du bois Unité de recherche en foresterieKétouBenin

Personalised recommendations